Yun GAO, Jiang-shan ZHAO, Jiu-huan LUO, et al. Adaptive feature fusion with the confidence region of a response map as a correlation filter tracker[J]. Optics and precision engineering, 2019, 27(5): 1178-1187.
DOI:
Yun GAO, Jiang-shan ZHAO, Jiu-huan LUO, et al. Adaptive feature fusion with the confidence region of a response map as a correlation filter tracker[J]. Optics and precision engineering, 2019, 27(5): 1178-1187. DOI: 10.3788/OPE.20192705.1178.
Adaptive feature fusion with the confidence region of a response map as a correlation filter tracker
To correct the failure of some correlated filter trackers using a fixed weight feature fusion under illumination variation and deformation
the correlation filter tracker with an adaptive feature fusion and a confidence region of the response map is proposed for enhancing tracking robustness. The confidence region of the response map is the region where each response value is higher than the expectation of the response map. The fusing weights of a HOG response map and color histogram response map at every frame were calculated using the confidence region of the HOG response map
realizing adaptive fusion. The simulated experiments compared the proposed tracker with five popular correlation filter trackers using a benchmark video database
OTB-2015. The experimental results show that the AUC and precision were 0.609 and 0.814
respectively
whereas under OTB-2015 values of 0.655 and 0.847
respectively
were obtained. Under illumination variation
the obtained values were 5.7% and 5.6% higher than Staple
and the AUC was 0.681 under illumination variation and deformation. With illumination variation
target deformation
background clutter and scale variation
the proposed tracker exhibited better tracking performance than the previously developed methodologies.
关键词
Keywords
references
BOLME D S, BEVERIDGE J R, DRAPER B A, et al .. Visual object tracking using adaptive correlation filters[C]. IEEE conference Computer Vision and Pattern Recognition ( CVPR ), 2010 IEEE Conference on. IEEE , 2010: 2544-2550.
LIU J M, GUO J W, SHI SH, et al .. Correlation filter tracking based on adaptive learning rate and location refiner[J]. Opt. precision Eng. , 2018, 26(8):2100-2111. (in Chinese)
HENRIQUES J F, CASEIRO R, MARTINS P, et al .. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence , 2015, 37(3):583-596.
GE B Y, ZUO X Z, HU YJ, et al .. Object tracking algorithm based two-step correlation filter[J] Infrared and laser engineering , 2018, 47(12): 388-397. (in Chinese)
DANELLJAN M, HAGER AND G, KHAN F S, et al .. Accurate scale estimation for robust visual tracking[C]. British Machine Vision Conference , 2014: 1-5.
YANG D D, MAO N, YANG F C, et al .. Improved SRDCF object tracking via the Best-Buddies similarity[J]. Opt. precision Eng ., 2018, 26(2):492-502. (in Chinese)
ZHANG B, JIANG F B, LIU G, et al .. Context-aware tracking based on a visual saliency and perturbation model[J]. Opt. precision Eng ., 2018, 26(8):2112-2121. (in Chinese)
LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Springer, Cham , 2015: 254-265.
BERNARDINI C, SILVERSTON T, FESTOR O. MPC: Popularity-based caching strategy for content centric networks[C]. IEEE International Conference on Communications. , 2014: 3619-3623.
DANELLJAN M, KHAN F S, FELSBERG M, et al .. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). IEEE , 2014: 1090-1097.
DANELLJAN M, HÄGER G, KHAN F S, et al .. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence , 2017, 39(8):1561-1575.
HENRIQUES J F, RUI C, MARTINS P, et al .. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Computer Vision - ECCV 2012. Springer Berlin Heidelberg , 2012: 702-715.
MA C, HUANG J B, YANG X, et al .. Hierarchical convolutional features for visual tracking[C]. IEEE International Conference on Computer Vision. IEEE Computer Society , 2015: 3074-3082.
DANELLJAN, MARTIN. Learning spatially regularized correlation filters for visual tracking[J]. IEEE International Conference on Computer Vision IEEE Computer Society , 2015:4310-4318.
WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps[C]. IEEE conference Computer Vision and Pattern Recognition ( CVPR ), July 2017.
DANELLJAN M, BHAT G, KHAN F S, et al .. ECO: efficient convolution operators for tracking[J]. axXiv: 1611.09224v1, 2016:6931-6939.
BERTINETTO L, VALMADRE J, GOLODETZ S, et al .. Staple: complementary learners for real-time tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). IEEE , 2016.
POSSEGGER H, MAUTHNER T, BISCHOF H. In defense of color-based model-free tracking[C]. IEEE conference Computer Vision and Pattern Recognition ( CVPR ), 2015: 2113-2120.
WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Trans Pattern Anal Mach Intell , 2015, 37(9):1834-1848.
EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al .. The pascal , visual object classes ( VOC ) Challenge [J]. International Journal of Computer Vision, 2010, 88(2):303-338.