The ultra-precision grid encoder is the key technology of the immersion lithography scanner for 32-7 nm node. Firstly
by analyzing the requirements and layout of the grid encoder position measurement system of the immersion lithography scanner
the basic requirement of a special grid encoder for the scanner is proposed. Secondly
for the present grating encoder
research on the basic optical path
phase detection
resolution multiplication
off-axis/rotation tolerance
and dead-path restrain scheme is reviewed and analyzed. Then
the key problems of the present scheme in the application of the lithography scanner are proposed. Thirdly
to address the required nanometer accuracy for the instrumental error of the grid encoder
the research on nonlinearity
dead-path
thermal drift
and wave-front distortion error are reviewed and analyzed; and the key problems to achieve sub-nanometer accuracy for the grid encoder are proposed. Finally
the above review is summarized
which can serve as a reference for the special grid encoder of immersion lithography scanner.
关键词
Keywords
references
DE JONG F, PASC B, CASTENMILLER T, et al . Enabling the lithography roadmap: an immersion tool based on a novel stage positioning system[J]. SPIE , 2009, 7274: 72741S.
CASTENMILLER T, MAST F, KORT T, et al . Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform[J]. SPIE , 2010, 7640: 76401N.
SHIBAZAKI Y, KOHNO H, HAMATANI M, et al . An innovative platform for high-throughput, high-accuracy lithography using a single wafer stage[J]. SPIE , 2009, 7274: 72741l.
WANG L J, ZHANG M, ZHU Y, et al . A novel heterodyne planar grating encoder system for in-plane and out-of-plane displacement measurement with nanometer-resolution[C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE , 2014: 173-177.
KONKOLA T P. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions [D]. Cambridge: Massachusetts Institute of Technology, 2003.
WANG L J, ZHANG M, ZHU Y, et al . Progress on scanning beam interference lithography tool with high environmental robustness for patterning large size grating with nanometre accuracy[C]// Proceedings of the 17th annual meeting of the European Society for Precision Engineering and Nanotechnology , Hannover, Germany: EUSPEN, 2017: 173-177.
WANG L J, ZHU Y, ZHANG M, et al . Ultra-precision control of homodyne frequency-shifting interference pattern phase locking system[J]. Opt. Precision Eng. , 2017, 25(5): 1213-1221. (in Chinese)
WANG L J, ZHANG M, LU S, et al . Ultra-precision control of homodyne frequency-shifting interference pattern phase locking system[J]. Opt. Precision Eng. , 2017, 25(5): 1213-1221.(in Chinese)
JI G F, HU J C, ZHU Y, et al . A grating interferometer-based six-degree-of-freedom measurement method for ultra-precision motion stages[C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE , 2014: 445-450.
LEE C K, WU C C, CHEN S J, et al . Design and construction of linear laser encoders that possess high tolerance of mechanical runout[J]. Applied Optics , 2004, 43(31): 5754-5762.
LEE J Y, CHEN H Y, HSU C C, et al . Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical , 2007, 137(1): 185-191.
WU C C, HSU C C, LEE J Y, et al . Optical heterodyne laser encoder with sub-nanometer resolution[J]. Measurement Science and Technology , 2008, 19: 045305.
HOLZAPFEL W. Advancements in displacement metrology based on encoder system[C]. Proceedings of the 23th annual meeting of the American Society for Precision Engineering, Portland, USA: ASPE , 2008: 71-74.
KAO C F, LU S H, SHEN H M, et al . Diffractive laser encoder with a grating in Littrow configuration[J]. Japanese Journal of Applied Physics , 2008, 47(3): 1833-1837.
GUAN J, KÖCHERT P, WEICHERT C, et al . A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder[J]. Precision Engineering , 2013, 37(4): 865-870.
CHENG F, FAN K C. Linear diffraction grating interferometer with high alignment tolerance and high accuracy[J]. Applied Optics , 2012, 50 (22): 4550-4556.
WU C C, CHENG C, YANG Z. Optical homodyne common-path grating interferometer with subnanometer displacement resolution[J]. SPIE , 2010, 7791: 779105.
HSIEH H L, LEE J Y, WU W T, et al . Quasi-common-optical-path heterodyne grating interferometer for displacement measurement[J]. Measurement Science and Technology , 2010, 21(11): 115304.
SHANG P. Study on the key technology of high-resolution diffraction grating interferometric transducer of linear displacements [D]. Hefei: Hefei University of Technology, 2012.(in Chinese)
WANG L J, ZHANG M, ZHU Y, et al . A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer[J]. Opt. Precision Eng. , 2017, 25(12): 2975-2985.(in Chinese)
KAO C F, LU S H, LU M H, et al . High resolution planar encoder by retro-reflection[J]. Review of Scientific Instruments , 2005, 76: 085110.
KAO C F, Chang C C, LU M H. Double-diffraction planar encoder by conjugate optics[J] . Optical Engineering , 2005, 44(2): 023603.
HSU C C, WU C C, LEE J Y, et al . Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications , 2008, 281(9): 2582-2589.
FENG C, ZENG L J and WANG S W. Heterodyne planar grating encoder with high alignment tolerance, especially insensitivity to grating tilts[J]. SPIE , 2013, 8759: 87593L.
XIA H J, FEI Y T and ZHANG M. Error Analysis of 2-D diffraction grating interferometer for high resolution displacement measurement[J]. SPIE , 2008: 7130: 713052.
LIN C B, YAN S H, DU Z G, et al . High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications , 2015, 339: 86-93.
KIMURA A, WEI G, ARAI Y, et al . Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering , 2010, 34(1): 145-155.
TRUTNA W, OWEN G, RAY A, et al . Littrow interferometer: US, US7440113B2[P].[2008-10-21] .
DE GROOT P, BADAMI V, LIESENER J. Concepts and geometries for the next generation of precision heterodyne optical encoders[C]. Proceedings of the 31th annual meeting of the American Society for Precision Engineering, Charlotte, USA: ASPE , 2016: 4660.
DECK L, DE GROOT P, SCHROEDER M. Interferometric encoder system: US, US2011/0255096A2[P].[2011-0-20].
LIESENER J. Interferometric encoder system: US, US2016/0102999A1[P].[2016-4-11].
KIMURA A, GAO W, KIM W, et al . A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering , 2012, 36(4): 576-585.
SAITO Y, ARAI Y, GAO W. Detection of three-axis angles by an optical sensor[J]. Sensors and Actuators A: Physical , 2009, 150(2): 175-183.
LI X H, GAO W, MUTO H, et al . A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering , 2013, 37(3): 771-781.
ELLIS J D. Front matter [M]//Field Guide to Displacement Measuring Interferometry, SPIE, DOI:10.1117/3.1002328.fm
DEMAREST F C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics[J]. Measurement Science and Technology , 1998, 9(7): 1024-1030.
HEYDEMAN P. Determination and correction of quadrature fringe measurement errors in interferometers[J]. Applied Optics , 1981, 20 (19):3382-3384.
DENG Y L, LI X J, GENG Y F, et al . Influence of nonpolarizing beam splitters on nonlinear error in heterodyne interferometers[J]. Acta Optica Sinica , 2012, 32(11): 146-151.(in Chinese)
SCHMITZ T L, BECKWITH J F. An investigation of two unexplored periodic error sources in differential-path interferometry[J]. Precision Engineering , 2003, 27(3): 311-322.
BADAMI V G, PATTERSON S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry[J]. Precision Engineering , 2000, 24(1): 41-49.
HOU W M. Optical parts and the nonlinearity in heterodyne interferometers[J]. Precision Engineering , 2006, 30(3): 337-346.
DE GROOT P. Jones matrix analysis of high-precision displacement measuring interferometers[C]. Proceedings of the 2nd topical meeting on optoelectronic distance measurement and applications, Pavia, Italy: ODIMA , 1999: 9-14.
BIRCH K, DOWNS M. Correction to the updated Edlen equation for the refractive index of air[J]. Metrologia , 1994, 31:315-316.
HOMLMES M, EVANS C. Displacement measuring interferometry measurement uncertainty[C] . Proceedings of the topical summer meeting of the American Society for Precision Engineering, Pennsylvania, USA: ASPE , 2004: 4660.
Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner
Ultra-precision spatial-separated heterodyne Littrow grid encoder displacement measurement system
Error compensation for laser heterodyne interferometric displacement measurement based on Kalman filter
Research on optical fiber multi-wavelength laser for measuring displacement precisely
Spatially separated heterodyne grating interferometer for in-plane displacement measurement
Related Author
WANG Leijie ZHANG Ming ZHU Yu YE Wei-nan YANG Fu-zhong
Leijie WANG
Ziwen GUO
Weinan YE
Ming ZHANG
Yu ZHU
CHEN Benyong
ZHOU Zhipeng
Related Institution
State Key Laboratory of Tribology & Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University
State Key Laboratory of Tribology & Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University
School of Information Science and Engineering, Zhejiang Sci-Tech University
Laboratory of Optoelectronic Information Science and Engineering, School of Science, Beijing Jiaotong University
Center of Ultra-precision Optoelectronic Instrument Engineering, Key Lab of Ultra-precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin Institute of Technology