浏览全部资源
扫码关注微信
上海大学 机电工程与自动化学院,上海 200444
Revised:01 January 2020,
Accepted:01 January 2020,
Published:15 April 2020
移动端阅览
Xiao-tian GONG, Hang-kong OUYANG. Improvement of Tiny YOLOV3 target detection[J]. Optics and precision engineering, 2020, 28(4): 988-995.
Xiao-tian GONG, Hang-kong OUYANG. Improvement of Tiny YOLOV3 target detection[J]. Optics and precision engineering, 2020, 28(4): 988-995. DOI: 10.3788/OPE.20202804.0988.
针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进。首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可分离卷积构造反残差块替换传统卷积,降低模型尺寸和参数量,增加高维特征提取;然后,在原网络两尺度预测的基础上增加一尺度,形成三尺度预测;最后,对损失函数中的边界框位置误差项进行优化。实验结果表明,改进后的Tiny YOLOV3算法的目标检测准确率比原算法提高了9.8%,满足实时性要求,具有一定鲁棒性。本文方法能够更好地提取目标特征,多尺度预测和边界框位置误差的改进能更准确地对目标进行检测。
The Tiny YOLOV3 target detection algorithm has a high error rate for small targets
such as pedestrians
in real-time detection.Therefore
this study aimed to improve the feature extraction network
prediction network
and loss function of the algorithm.First
a two-step convolution layer was added to the feature extraction network to replace the maximum pooling layer in the original network for downsampling. Second
the traditional convolution was replaced with an anti-residual block constructed by a deep convolutional convolution to reduce the model size as well as number of parameters and increase the high-dimensional feature extraction.Third
based on the original two-scale prediction of the network
a scale was added to form a three-scale prediction. Finally
the boundary box position error in the loss function was optimized.The experimental results demonstrat that the improved Tiny YOLOV3 algorithm achieve a target detection accuracy that IS 9.8% higher than the original algorithm
satisfied the real-time requirement
and demonstratedrobustness.The proposed method can better extract target features
and the multi-scale prediction and improvement of the boundary box position error can detect targets more accurately.
G RÄTSCH , T ONODA , K R MÜLLER . Soft margins for Ada-Boost . Machine Learning , 2001 . 42 ( 3 ): 287 - 320 . http://cn.bing.com/academic/profile?id=e560f7f42dc14e6f528e7a197b035ac5&encoded=0&v=paper_preview&mkt=zh-cn http://cn.bing.com/academic/profile?id=e560f7f42dc14e6f528e7a197b035ac5&encoded=0&v=paper_preview&mkt=zh-cn .
丁 鹏 , 张 叶 , 刘 让 , 等 . 结合形态学和Canny算法的红外弱小目标检测 . 液晶与显示 , 2016 . 31 ( 8 ): 793 - 800 . http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010 http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010 .
P DING , Y ZHANG , R LIU , 等 . Infrared small target detection based on adaptive Canny algorithm and morphology . Chinese Journal of Liquid Crystal and Displays , 2016 . 31 ( 8 ): 793 - 800 . http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010 http://d.old.wanfangdata.com.cn/Periodical/yjyxs201608010 .
张 国梁 , 贾 松敏 , 张 祥银 , 等 . 采用自适应变异粒子群优化SVM的行为识别 . 光学 精密工程 , 2017 . 25 ( 6 ): 1669 - 1678 . http://www.eope.net/CN/abstract/abstract17080.shtml http://www.eope.net/CN/abstract/abstract17080.shtml .
G L ZHANG , S M JIA , X Y ZHANG , 等 . Action recognition based on adaptive mutation particle swarm optimization for SVM . Editorial Office of Optics and Precision Engineering , 2017 . 25 ( 6 ): 1669 - 1678 . http://www.eope.net/CN/abstract/abstract17080.shtml http://www.eope.net/CN/abstract/abstract17080.shtml .
梁 华 , 宋 玉龙 , 钱 锋 , 等 . 基于深度学习的航空对地小目标检测 . 液晶与显示 , 2018 . 33 ( 9 ): 793 - 800 . http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011 http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011 .
H LIANG , Y L SONG , F QIAN , 等 . Detection of small target in aerial photography based on deep learning . Chinese Journal of Liquid Crystal and Displays , 2018 . 33 ( 9 ): 793 - 800 . http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011 http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011 .
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE international conference on computer vision . 2015: 1440-1448.
REN S, HE K, GIRSHICK R, et al . Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[C]. Proceedings of International Conference on Neural Information Processing Systems , 2015: 91-99.
HE K, GKIOXARI G, DOLLÁR P, et al . Mask R-CNN[C]. Computer Vision ( ICCV ), 2017 IEEE International Conference on. IEEE , 2017: 2980-2988.
FU C Y, LIU W, RANGA A, et al . DSSD: Deconvolutional single shot detector[J]. arXiv preprint arXiv: 1701.06659, 2017.
REDMON J, DIVVALA S, GIRSHICK R, et al . You Only Look Once: Unified, Real-Time Object Detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2016: 779-788.
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[J]. arXiv preprint arXiv , 1612.08242, 2017.
REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv , 1804.02767, 2018.
LIN T Y, DOLL?R P, GIRSHICK R, et al . Feature pyramid networks for object detection[J]. arXiv preprint arXiv: 1612.03144, 2016.
NOH H, HONG S, HAN B. Learning Deconvolution Network for Semantic Segmentation[C]. IEEE International Conference on Computer Vision , 2016: 1520-1528.
刘 智 , 黄 江涛 , 冯 欣 . 构建多尺度深度卷积神经网络行为识别模型 . 光学 精密工程 , 2017 . 25 ( 3 ): 799 - 805 . http://www.eope.net/CN/abstract/abstract16952.shtml http://www.eope.net/CN/abstract/abstract16952.shtml .
ZH LIU , J T HUANG , X FENG . Construction of multi-scale deep convolutional neural network behavior recognition model . Opt. Precision Eng , 2017 . 25 ( 3 ): 799 - 805 . http://www.eope.net/CN/abstract/abstract16952.shtml http://www.eope.net/CN/abstract/abstract16952.shtml .
杨 州 , 慕 晓冬 , 王 舒洋 , 等 . 基于多尺度特征融合的遥感图像场景分类 . 光学 精密工程 , 2018 . 26 ( 12 ): 232 - 240 . http://www.eope.net/CN/abstract/abstract17866.shtml http://www.eope.net/CN/abstract/abstract17866.shtml .
YANG ZH YANG , X D MU , SH Y WANG , 等 . Remote sensing image scene classification based on multiscale feature fusion . Opt. Precision Eng , 2018 . 26 ( 12 ): 232 - 240 . http://www.eope.net/CN/abstract/abstract17866.shtml http://www.eope.net/CN/abstract/abstract17866.shtml .
刘 伟宁 . 基于小波域扩散滤波的弱小目标检测 . 中国光学 , 2011 . 4 ( 5 ): 503 - 508 . DOI: 10.3969/j.issn.2095-1531.2011.05.015 http://doi.org/10.3969/j.issn.2095-1531.2011.05.015 .
W N LIU . Dim target detection based on wavelet field diffusion filter . Chinese Optics , 2011 . 4 ( 5 ): 503 - 508 . DOI: 10.3969/j.issn.2095-1531.2011.05.015 http://doi.org/10.3969/j.issn.2095-1531.2011.05.015 .
刘 希佳 , 陈 宇 , 王 文生 , 等 . 小目标识别的小波阈值去噪方法 . 中国光学 , 2012 . 5 ( 3 ): 248 - 256 . DOI: 10.3969/j.issn.2095-1531.2012.03.009 http://doi.org/10.3969/j.issn.2095-1531.2012.03.009 .
X J LIU , Y CHEN , W SH WANG , 等 . De-noising algorithm of wavelet threshold for small target detection . Chinese Optics , 2012 . 5 ( 3 ): 248 - 256 . DOI: 10.3969/j.issn.2095-1531.2012.03.009 http://doi.org/10.3969/j.issn.2095-1531.2012.03.009 .
0
Views
314
下载量
17
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution