Zhi-fu LI, Nan HUANG, Yun ZHONG, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Optics and precision engineering, 2020, 28(5): 1124-1131.
DOI:
Zhi-fu LI, Nan HUANG, Yun ZHONG, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Optics and precision engineering, 2020, 28(5): 1124-1131. DOI: 10.3788/OPE.20202805.1124.
Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators
Hysteresis nonlinearities in the entire working range of piezoelectric ceramic actuators often result in reduced system accuracy
oscillations
and system instability. For a periodic sinusoidal input signal
a hysteresis modeling method based on a fractional-order operator was proposed herein. First
based on the analysis of piezoelectric and fractional-order operator characteristics
a fractional-order operator involving a simple structure and few parameters was used to describe the hysteresis characteristics of piezoelectric ceramics. Subsequently
a piezoelectric actuated micro-displacement positioning experimental platform based on dSpace was built. Finally
a fractional-order-operator-based hysteresis modeling method was applied to the piezoelectric actuated micro-displacement positioning platform to identify the hysteretic nonlinear characteristics of piezoelectric ceramics. The experimental results show that the Fractional-Order hysteresis Model (FOM) is superior to the traditional Prandtl-Ishlinskii Model (PIM) and the Enhanced Prandtl-Ishlinskii model (EPIM). In the low-frequency range
the precision of the FOM is slightly higher than that of the PIM and EPIM models; however
in the high-frequency range
the precision of the FOM model is significantly higher than that of the PIM and EPIM models. When the input frequency is 100 Hz
the accuracy of the proposed FOM is 69.84% and 68.88% higher than that of the PIM and EPIM models on the root mean square error
respectively.
关键词
Keywords
references
DU J, FENG Y, SU C Y. On the Adaptive control of systems preceded by saturated hysteresis[C]. Proceeding of the 4th IEEE Conference on Industrial Electronics and Application , Xi'an, P.R. China, 2009: 302-306.
M S RANA , H R POTA , I R PETERSEN . A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging . Asian Journal of Control , 2018 . 20 ( 4 ): 1379 - 1399 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed9ce5104de1389cffea9bc3a779b221 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed9ce5104de1389cffea9bc3a779b221 .
ZH F LI , P YUAN , Y M HU . Adaptive inverse control of a class of uncertain nonlinear systems with unknown Prandtl-Ishlinskii . Control Theory & Applications , 2012 . 29 ( 6 ): 723 - 729 .
X J YANG , J W HU , T SH LI . Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification . Opt. Precision Eng. , 2019 . 27 ( 3 ): 610 - 618 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201903013 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201903013 .
K KUHNEN . Modeling, identification and compensation of complex hysteretic nonlinearities and log(t)-type creep dynamics . Control and Intelligent systems , 2005 . 33 ( 2 ): 134 - 147 .
X B TAN , R V IYER . Modeling and control of hysteresis . IEEE Control System Magazine , 2009 . 29 ( 1 ): 26 - 29 . DOI: 10.1109/MCS.2008.930921 http://doi.org/10.1109/MCS.2008.930921 .
D Q HUANG , J X XU , V VENKATARAMANAN , 等 . High-performance tracking of Piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling . IEEE Transactions on Industrial Electronics , 2014 . 61 ( 2 ): 1085 - 1098 . DOI: 10.1109/TIE.2013.2253071 http://doi.org/10.1109/TIE.2013.2253071 .
J D WEI , C T SUN . Construction hysteretic memory in neural networks . IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , 2000 . 30 ( 4 ): 601 - 609 .
M A JANAIDEH , S RAKHEJA , C Y SU . An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control . IEEE/ASEM Transactions on Mechatronics , 2011 . 16 ( 4 ): 734 - 744 . http://cn.bing.com/academic/profile?id=77848e040b7caa3351d114173f8ecc0b&encoded=0&v=paper_preview&mkt=zh-cn http://cn.bing.com/academic/profile?id=77848e040b7caa3351d114173f8ecc0b&encoded=0&v=paper_preview&mkt=zh-cn .
P ZH LI , CH GE , ZH D SU , 等 . Control of piezoelectric ceramic actuator via dynamic fuzzy system model . Opt. Precision Eng. , 2013 . 21 ( 2 ): 394 - 399 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201302021 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201302021 .
GU G Y, ZHU L M, SU C Y. Robust adaptive control of piezo-actuated positioning stages with an ellipse-based hysteresis model [C]. Proceeding of the IEEE International Conference on Information and Automation, Shenzhen, P.R. China , 2011: 123-128.
G Y GU , L M ZHU . Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses . Sensors and Actuators A , 2011 . 165 303 - 309 . DOI: 10.1016/j.sna.2010.09.020 http://doi.org/10.1016/j.sna.2010.09.020 .
B SHANG , J LIU , Y ZHANG , 等 . Fractional-order flight control of quadrotor UAS on vision-based precision hovering with larger sampling period . Nonlinear Dynamics , 2019 . 97 ( 2 ): 1735 - 1746 . http://cn.bing.com/academic/profile?id=b77c7043f4926d2e0c9ac8535c7aeccb&encoded=0&v=paper_preview&mkt=zh-cn http://cn.bing.com/academic/profile?id=b77c7043f4926d2e0c9ac8535c7aeccb&encoded=0&v=paper_preview&mkt=zh-cn .
O P AGRAWAL , Y XU . Generalized vector calculus on convex domain . Communications in Nonlinear Science and Numerical Simulation , 2015 . 23 ( 1 ): 129 - 140 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e837cf6be48d54728890eeeb50d054b http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e837cf6be48d54728890eeeb50d054b .
S MASHAYEHI , M Y HUSSAINI , W OATES . A physical interpretation of fractional viscoelasticity based on the fractal structure of media: Theory and experimental validation . Journal of the Mechanics and Physics of Solids , 2019 . 128 137 - 150 . DOI: 10.1016/j.jmps.2019.04.005 http://doi.org/10.1016/j.jmps.2019.04.005 .
薛 定宇 . 分数阶微积分学与分数阶控制 , : 北京 科学出版社 , 2018 .
D Y XUE . Fractional Calculus and Fractional-Order Control , : Beijing Science Press , 2018 .
G Y GU , M J YANG , L M ZHU . Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model . Review of Scientific Instruments , 2012 . 83 ( 065106 ): 1 - 8 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48ede7c539a56e9911dd81dce5aed827 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48ede7c539a56e9911dd81dce5aed827 .
Z F LI , Y M HU , Y LIU , 等 . Adaptive inverse control of non-linear systems with unknown complex hysteretic non-linearities . IET Control Theory and Applications , 2012 . 6 ( 1 ): 1 - 7 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e760037dbc80a5c056df69c40c76f7e http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e760037dbc80a5c056df69c40c76f7e .
High-precision adaptive fractional order sliding mode tracking control for piezoelectric platform
Identification and compensation of friction for modular joints based on grey wolf optimizer
Identification method of micro-vibration parameters of satellite reaction wheelsunder continuous rotating speed
Parameter calibration of 6-dof parallel mechanism using orthogonal displacement measurement system
Rate-dependent dynamic hysteresis modeling of piezoelectric micro platform and its parameter identification
Related Author
SUN Mingchao
PENG Jiaqi
SONG Yueming
Jing-kai CUI
Hua-yang SAI
En-yang ZHANG
Ming-chao ZHU
Zhen-bang XU
Related Institution
Army Armaments Department
State Key Laboratory of Dynamic Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
University of Chinese Academy of Sciences
Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences