浏览全部资源
扫码关注微信
1.北京理工大学 光电学院,北京 100081
2.西安应用光学研究所,陕西 西安 710065
3.中国人民解放军32180部队,北京 100012
Received:31 December 2019,
Accepted:27 February 2020,
Published:15 June 2020
移动端阅览
Ze-dong GAO, Hong-xing GAO, Yuan-yuan ZHU, et al. Review of snapshot spectral imaging technologies[J]. Optics and precision engineering, 2020, 28(6): 1323-1343.
Ze-dong GAO, Hong-xing GAO, Yuan-yuan ZHU, et al. Review of snapshot spectral imaging technologies[J]. Optics and precision engineering, 2020, 28(6): 1323-1343. DOI: 10.3788/OPE.20202806.1323.
系统地分析了各种快照式光谱成像技术并进行了对比。依据光谱数据立方体分割到2D空间进行成像的方法,将不同的快照式光谱成像技术分成图像分割、孔径分割、光路分割和频率分割4类,按类别探讨了17种技术方案的原理、优点、缺点与现状
从空间像素数与光谱通道数权衡、图谱匹配、空间采样连续性、光能利用率及动态范围5个方面进行了对比和展望。研究结果有助于相关领域学者快速全面地了解快照式光谱成像仪的研究现状,为进一步提升其综合性能奠定基础。
This study systematically analyzed and compared various snapshot imaging techniques.According to the method of spectral data cube segmentation in 2D space
snapshot spectral imaging techniques are divided into four categories: image segmentation
aperture segmentation
optical path segmentation
and frequency segmentation. The principles
advantages
disadvantages
and current status of 17 technical schemes werestudied for each category.The analysis and comparisonwere based on the following five aspects: the tradeoff between the spectral channels and spatial pixels
matching of space and spectrum
space continuous sampling
light utilization
and detector dynamic range.The results of our study will help researchers in related fields to quickly and comprehensively understand the research status of snapshot spectral imaging
and in addition the results will lay a foundation for further improvement of the overall performance of these techniques.
HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[C]. Optical Engineering , 2013, 52(9): 090901.
GAO L, WANG L V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel[J]. Physics Reports, 2016, 616: 1-37.
朱院院, 高教波, 高泽东, 等.基于多区间映射评价优选的光谱数据融合显示算法[J].应用光学, 2015, 36(5): 728-734.
ZHU Y Y, GAO J B, GAO Z D, et al.. Fusion and vision algorithm of spectral data based on mappingevaluating-optimizing methods within multi-section[J]. Journal of Applied Optics, 2015, 36(5): 728-734. (in Chinese)
闫敬文, 陈宏达, 刘蕾.高光谱图像分类的研究进展[J].光学 精密工程, 2019, 27(3): 680-693.
YAN J W, CHEN H D, LIU L. Overview of hyperspectral image classification[J]. Opt. Precision Eng., 2019, 27(3): 680-693. (in Chinese)
朱院院, 高教波, 高泽东, 等.高光谱空间降采样独立成分特征分离[J].光学 精密工程, 2015, 23(11): 3246-3258.
ZHU Y Y, GAO J B, GAO Z D, et al.. Independent component feature separation based on spatial down sample for hyperspectral image[J]. Opt. Precision Eng., 2015, 23(11): 3246-3258. (in Chinese)
张小荣, 胡炳樑, 潘志斌, 等.基于张量表示的高光谱图像目标检测[J].光学 精密工程, 2019, 27(2): 488-498.
ZHANG X R, HU B L, PAN ZH B, et al.. Tensor representation based target detection for hyperspectral imagery[J]. Opt. Precision Eng., 2019, 27(2): 488-498. (in Chinese)
高泽东, 郝群, 刘宇, 等.高光谱成像与应用技术发展[J].计测技术, 2019, 39(4): 24-34.
GAO Z D, HAO Q, LIU Y, et al.. Hyperspectral imaging and application technology development[J]. Metrology & Measurement Technology, 2019, 39(4): 24-34. (in Chinese)
BOWEN I S. The image-slicer a device for reducing loss of light at slit of stellar spectrograph[J]. The Astrophysical Journal Letters, 1938, 88: 113.
冯姗, 曾祥忠.四通道可见光光谱相机的设计[J].应用光学, 2019, 40(3): 393-398.
FENG SH, ZENG X ZH. Design of four-channel visible-spectral camera[J]. Journal of Applied Optics, 2019, 40(3): 393-398. (in Chinese)
成刚, 方帆, 宁飞, 等.无人机载多光谱侦察效能研究[J].应用光学, 2017, 38(5): 685-688.
CHENG G, FANG F, NING F, et al.. Study on performance of multi spectral reconnaissance of unmanned aerial vehicle[J]. Journal of Applied Optics, 2017, 38(5): 685-688. (in Chinese)
GAO L, KESTER R T, HAGEN N, et al.. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18(14): 14330-14344.
GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Proc SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics Ⅶ , San Francisco, California, USA, 2014, 8974: 89740L.
HORSTMEYER R, EULISS G, ATHALE R, et al.. Flexible multimodal camera using a light field architecture[C]. 2009 IEEE International Conference on Computational Photography (ICCP) , 16-17 April 2009, San Francisco, CA, USA. IEEE, 2009: 1-8.
HORSTMEYER R, ATHALE R A, EULISS G W. Modified light field architecture for reconfigurable multimode imaging[J]. Proceedings of SPIE, 2009, 7468: 746804.
GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.
SHOGENJI R, KITAMURA Y, YAMADA K, et al.. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655.
GEELEN B, JAYAPALA M, TACK N, et al.. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX , Baltimore, Maryland, USA, 2013, 8743: 87431E.
HUBOLD M, BERLICH R, GASSNER C, et al.. Ultra-compact micro-optical system for multispectral imaging[C]. Proc SPIE 10545, MOEMS and Miniaturized Systems XVⅡ , San Francisco, California, USA, 2018, 1054: 105450V.
MU T K, HAN F, BAO D H, et al.. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter[J]. Optics Letters, 2019, 44(5): 1281-1284.
KUDENOV M W, DERENIAK E L. Compact real-time birefringent imaging spectrometer[J]. Optics Express, 2012, 20(16): 17973-17986.
HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers I Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85.
STOFFELS J, BLUEKENS A A J, PETRUS JACOBUS M P. Color splitting prism assembly: US4084180[P]. 1978-04-11.
MURAKAMI Y, YAMAGUCHI M, OHYAMA N. Hybrid-resolution multispectral imaging using color filter array[J]. Optics Express, 2012, 20(7): 7173-7183.
HEADLAND S E, JONES H R, D'SA A S V, et al.. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry[J]. Scientific Reports, 2015, 4: 5237.
GORMAN A, FLETCHERHOLMES D W, HARVEY A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 2010, 18(6): 5602-5608.
KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al.. White-light Sagnac interferometer for snapshot multispectral imaging[J]. Applied Optics, 2010, 49(21): 4067-4076.
CONTENT R, BLAKE S, DUNLOP C, et al.. New microslice technology for hyperspectral imaging[J]. Remote Sensing, 2013, 5(3): 1204-1219.
GAT N, SCRIVEN G, GARMAN J, et al.. Development of four-dimensional imaging spectrometers (4D-IS)[C]. SPIE Optics + Photonics. Proc SPIE 6302, Imaging Spectrometry XI , San Diego, California, USA, 2006, 6302: 63020M.
KRIESEL J, SCRIVEN G, GAT N, et al.. Snapshot hyperspectral fovea vision system (HyperVideo)[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVⅢ , Baltimore, Maryland, USA, 2012, 8390: 83900T.
DWIGHT J G, TKACZYK T S. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy[J]. Biomedical Optics Express, 2017, 8(3): 1950-1964.
BODKIN, SHEINIS A, NORTON A, et al.. Snapshot hyperspectral imaging-the hyperpixel array camera[J]. Proceedings of SPIE, 2009: 7334.
CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2423-2435.
CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2423-2435.
WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44.
WAGADARIKAR A A, PITSIANIS N P, SUN X B, et al.. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 2009, 17(8): 6368-6388.
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
WAGADARIKARA A A, PITSIANISABC N P, SUN X B, et al.. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2008: 7076(36): 6824-6833.
ARGUELLO H, RUEDA H, WU Y H, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12.
ARGUELLO H, ARCE G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 2013, 22(3): 941-954.
WANG L Z, XIONG Z W, GAO D H, et al.. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858.
余晓畅, 赵建村, 虞益挺.像素级光学滤波-探测集成器件的研究进展[J].光学 精密工程, 2019, 27(5): 999-1012.
YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Opt. Precision Eng., 2019, 27(5): 999-1012. (in Chinese)
TANIDA J, KUMAGAI T, YAMADA K, et al.. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system[C]. Proc SPIE 4089, Optics in Computing 2000 , 2000, 4089: 1030-1036.
TANIDA J, SHOGENJI R, KITAMURA Y, et al.. Color imaging with an integrated compound imaging system[J]. Optics Express, 2003, 11(18): 2109.
HAGEN N, DERENIAK E L. New grating designs for a CTIS imaging spectrometer[C]. Proc. of SPIE , 2007, 6565: 65650N.
ORTYN W E, BASIJI D A. Imaging and analyzing parameters of small moving objects such as cells: US6608682[P]. 2003-08-19.
0
Views
573
下载量
16
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution