浏览全部资源
扫码关注微信
中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230027
E-mail: jwl@ustc.edu.cn
收稿日期:2021-03-10,
修回日期:2021-03-30,
移动端阅览
宋博文,李家文.中空双螺旋微机器人的飞秒激光动态全息高效加工[J].光学精密工程,
SONG Bo-wen,LI Jia-wen.Rapid fabrication of hollow double helix microrobot using femtosecond laser dynamic holograpic method[J].Optics and Precision Engineering,
宋博文,李家文.中空双螺旋微机器人的飞秒激光动态全息高效加工[J].光学精密工程, DOI:10.37188/OPE..0001
SONG Bo-wen,LI Jia-wen.Rapid fabrication of hollow double helix microrobot using femtosecond laser dynamic holograpic method[J].Optics and Precision Engineering, DOI:10.37188/OPE..0001
为了实现微机器人的快速批量制造,本文提出一种飞秒贝塞尔光束叠加干涉方法生成带侧瓣的环形光场,并结合动态全息加工术,实现了中空螺旋微机器人的高效制造。首先,对根据贝塞尔传输函数生成的贝塞尔全息图进行叠加,并对产生的光场进行仿真和实验测量。然后利用叠加的全息图加工得到具有不同侧瓣数目(2~4)的环形结构,分析了两种不同参数对侧瓣宽度和圆环直径的影响。接着,通过引入动态全息加工方法,实现了中空双螺旋微机器人的高效快速加工,微机器人宽为25 µm、长度为100 µm。最后,利用旋转磁场驱动微机器人在微流体环境实现运动。实验表明加工单个微机器人仅需6 s,旋转磁场下微机器人在7 s内沿直线前进400 µm。本文首次利用动态全息的方法快速制备出了中空双螺旋微机器人并实现无线磁驱动,为批量制造具有运载能力的磁驱微机器人在生物医学领域中的广泛应用提供了一种新的途径。
In order to realize the rapid mass fabrication of microrobots, in this study, a femtosecond Bessel beam superposition interference method is proposed to generate a circular light with side lobes, which combining with dynamic holographic processing allows efficiently fabricating hollow helix microrobots. Firstly, the Bessel holograms generated according to the Bessel transmission function are superposed and the generated light field is simulated and experimentally measured. Then, ring structures with different number of side lobes (2-4) are fabricated by using the superimposed holograms, and the effect of two different parameters on the width of side lobe and the diameter of ring is analyzed. After that, hollow double helix microrobots with width of 25 µm and length of 100 µm are rapidly fabricated by introducing dynamic holographic processing method. Finally, microrobots are drived by rotating magnetic field in microfluidic environment. Experimental results indicate that it takes only 6 s to process a microrobot and the microrobot advances 400 µm in a straight line in 7 s under rotating magnetic field. This method provides a promising way for mass manufacturing of helix microrobot and has immense application such as noninvasive surgery and drug delivery.
BERG H C , ANDERSON R A . Bacteria swim by rotating their flagellar filaments [J]. Nature , 1973 , 245 ( 5425 ): 380 - 382 .
LEE S , KIM S , KIM S , et al . A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery [J]. Advanced Healthcare Materials , 2018 , 7 ( 9 ): 1700985 .
AHMED D , BAASCH T , BLONDEL N , et al . Neutrophil-inspired propulsion in a combined acoustic and magnetic field [J]. Nature Communications , 2017 , 8 : 770 .
XI W , SOLOVEV A A , ANANTH A N , et al . Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery [J]. Nanoscale , 2013 , 5 ( 4 ): 1294 - 1297 .
KAGAN D , BENCHIMOL M J , CLAUSSEN J C , et al . Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation [J]. Angew Chem Int Ed Engl , 2012 , 51 ( 30 ): 7519 - 7522 .
LI J , LI X J , LUO T , et al . Development of a magnetic microrobot for carrying and delivering targeted cells [J]. Science Robotics , 2018 , 3 ( 19 ): eaat8829 .
GHOSH S , GHOSH A . Mobile nanotweezers for active colloidal manipulation [J]. Science Robotics , 2018 , 3 ( 14 ): eaaq0076 .
VILELA D , PARMAR J , ZENG Y F , et al . Graphene-based microbots for toxic heavy metal removal and recovery from water [J]. Nano Letters , 2016 , 16 ( 4 ): 2860 - 2866 .
ZHU W , LI J X , LEONG Y J , et al . 3D-Printed Artificial Microfish [J]. Advanced Materials , 2015 , 27 ( 30 ): 4411 - 4417 .
AVILA B E , ANGSANTIKUL P , RAMÍREZ-HERRERA D E , et al . Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins [J]. Science Robotics , 2018 , 3 ( 18 ): eaat0485 .
DAI B , WANG J , XIONG Z , et al . Programmable artificial phototactic microswimmer [J]. Nature Nanotechnology , 2016 , 11 ( 12 ): 1087 - 1092 .
BALK A L , MAIR L O , MATHAI P P , et al . Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles [J]. ACS Nano , 2014 , 8 ( 8 ): 8300 - 8309 .
GAO W , FENG X M , PEI A , et al . Bioinspired helical microswimmers based on vascular plants [J]. Nano Letters , 2014 , 14 ( 1 ): 305 - 310 .
MAIER A M , WEIG C , OSWALD P , et al . Magnetic propulsion of microswimmers with DNA-based flagellar bundles [J]. Nano Letters , 2016 , 16 ( 2 ): 906 - 910 .
ALAPAN Y , YASA O , SCHAUER O , et al . Soft erythrocyte-based bacterial microswimmers for cargo delivery [J]. Science Robotics , 2018 , 3 ( 17 ): eaar4423 .
HOOP M , SHEN Y , CHEN X Z , et al . Magnetically driven silver-coated nanocoils for efficient bacterial contact killing [J]. Advanced Functional Materials , 2016 , 26 ( 7 ): 1063 - 1069 .
ZHANG L , ABBOTT J J , DONG L X , et al . Artificial bacterial flagella: Fabrication and magnetic control [J]. Applied Physics Letters , 2009 , 94 ( 6 ): 064107 .
TOTTORI S , ZHANG L , QIU F , et al . Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Advanced Materials (Deerfield Beach , Fla ) , 2012 , 24 ( 6 ): 811 - 816 .
苏亚辉 , 秦天天 , 许兵 , 等 . 飞秒激光双光子聚合方法加工图案化微透镜及其成像测试 [J]. 光学 精密工程 , 2020 , 28 ( 12 ): 2629 - 2635 .
SU Y H , QIN T T , XU B , et al . Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test [J]. Opt. Precision Eng. , 2020 , 28 ( 12 ): 2629 - 2635 . (in Chinese)
袁宏伟 , 饶生龙 , 吴东 , 等 . 基于飞秒激光的可运动微结构加工与旋转驱动 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 584 - 590 .
YUAN H W , RAO SH L , WU D , et al . Moveable microstructure machining and rotating drive based on femtosecond laser [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 584 - 590 . (in Chinese)
0
浏览量
421
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构