浏览全部资源
扫码关注微信
重庆大学 光电技术及系统教育部重点实验室 重庆,400044
纸质出版日期:2014-03-25
移动端阅览
龚卫国,潘飞宇,李进明. 用双层重建法实现单幅图像的超分辨率重建[J]. 光学精密工程, 2014,22(3): 720-729
GONG Wei-guo, PAN Fei-yu, LI Jin-ming. Single-image super-resolution reconstruction via double layer reconstructing[J]. Editorial Office of Optics and Precision Engineering, 2014,22(3): 720-729
针对现有基于稀疏编码的单幅图像超分辨率重建算法易导致重建图像中出现不正确几何结构的现象
提出一种字典非相关性约束和稀疏系数非局部自相似性约束结合的稀疏编码方法。为解决引入这种自相似性约束造成的重建图像边缘过度平滑、模糊的问题
提出了基于平滑层和纹理层的双层重建框架。该方法运用一种全局非零梯度数目约束重建模型重建平滑层;通过提出的稀疏编码方法重建高分辨率纹理图像。最后
利用一个全局和局部优化模型进一步提升重建图像的质量。实验结果表明
与一些具有代表性的重建方法相比
该方法得到的峰值信噪比(PSNR)和结构相似度(SSIM)平均值分别提高了0.798 7~3.242 4 dB和0.018 6~0.083 5
不仅主观视觉效果上取得了明显的改进
鲁棒性得到增强
而且重建出了更加准确的结构和边缘
取得了更好的重建效果。
刘妍妍, 张新, 张建萍.超分辨重建技术及其研究进展[J].中国光学与应用光学, 2009, 2(2):103-111.
LIU Y Y, ZHANG X, ZHANG J P.Super-resolved reconstruction technologies and recent evolution [J].Chinese Journal of Optics and Applied Optics, 2009, 2(2):103-111.(in Chinese)
PARK S C, PARK M K, KANG M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine, 2003, 20(3):21-36.
FREEMAN W, PASZTOR E, CARMICHAEL O.Learning low-level vision [J].International Journal of Compute Vision, 2000, 40(1):25-47.
朱福珍, 李金宗, 朱兵, 等.基于径向基函数神经网络的超分辨率图像重建[J].光学 精密工程, 2010, 18(6):1444-1451.
ZHU F ZH, LI J Z, ZHU B, et al..Super-resolution image reconstruction based on RBF neural network[J].Opt.Precision Eng., 2010, 18(6):1444-1451.(in Chinese)
CHANG H, YEUNG D, XIONG Y M.Super-resolution through neighbor embedding [C].Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 1:275-282
吴炜, 杨晓敏, 陈默, 等.一种新颖的人脸图像超分辨率技术[J].光学 精密工程, 2008, 16(5):815-821.
WU W, YANG X M, CHEN M, et al..Novel method of face hallucination[J].Opt.Precision Eng., 2008, 16(5):815-821.(in Chinese)
朱明, 高文, 郭立强.压缩感知理论在图像处理领域的应用[J].中国光学, 2011, 4(5):442-447.
ZHU M, GAO W, GUO L Q.Application of compressed sensing theory in image processing [J].Chinese Optics, 2011, 4(5):442-447.(in Chinese)
YANG J, WRIGHT J, HUANG T, et al..Image super-resolution via sparse representation [J].IEEE Trans.Image Process, 2010, 19(11):2861-2873.
李民, 程健, 乐翔, 等.稀疏字典编码的超分辨率重建[J].软件学报, 2012, 23(5):1315-1320.
LI M, CHENG J, LE X, et al..Super-resolution based on sparse dictionary coding [J].Journal of Software, 2012, 23(5):1315-1320.(in Chinese)
YANG S Y, WANG M, CHEN Y, et al..Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J].IEEE Trans.Image Processing, 2012, 21(9):4016-4028.
DONG W, ZHANG L, SHI G, et al..Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization [J].IEEE Trans.Image Process, 2011, 20(7):1838-1857.
LU X, YUAN Y, YAN P.Image super-resolution via double sparsity regularized manifold learning [J].IEEE Trans.Circuits and Systems for Video Technology, 2013, (99).
KRAUSE A, CEVHER V.Submodular dictionary selection for sparse representation [C].In Proceedings of International Conference on Machine Learning, 2010.
郭军伟.应用CS理论实现同步采样压缩成像[J].中国光学与应用光学, 2009, 2(6):526-530.
GUO J W.Image system of synchronous sample and compression based on CS theory [J].Chinese Journal of Optics and Applied Optics, 2009, 2(6):526-530.(in Chinese)
ZHENG M, BU J, CHEN C, et al..Graph regularized sparse coding for image representation[J].IEEE Transactions on Image Processing, 2011, 20(5):1327-1336.
BUADES A, COLL B, MOREL J M.A non-local algorithm for image denoising [C].In Proc.IEEE Conf.Comput.Vis.Pattern Recognition, 2005:60-65.
CANDES E J, WAKIN M B.An introduction to compressive sampling [J].IEEE Transactions on Signal Process, 2008, 25(2):21-30.
LEE H, BATTLE A, RAINA R.An efficient sparse coding algorithms [J].In Advances in Neural Information Processing Systems, 2007.
AHARON M, ELAD M, BRUCKSTEIN A.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Trans.Signal Processing, 2006, 54(11):4311-4322.
YANG J, WANG Z, LIN Z, et al..Couple dictionary training for image super-resolution [J].IEEE Trans.Image Processing, 2012, 21(8):3467-3478.
XU L, LU C, XU Y, et al..Image smoothing via L0 gradient minimization [J].ACM Trans.Graph, 2012, 30(6):174:1-174.
BERTALMIO M, SAPIRO G, CASELLES V, et al..Image impainting[C].Proceeding ACM SIGGRAPH, New Orleans, LA, 2000:417-424.
WANG Y, YANG J, YIN W, et al..A new alternating minimization algorithm for total variation image reconstruction [J].SIAMJ, Imaging Sciences, 2008, 3(1):248-272.
ZHANG K, GAO X, TAO D, et al..Single image super-resolution with non-local means and steering kernel regression [J].IEEE Trans. Image Processing, 2012, 21(11):4544-4556.
TAKEDA H, FARSIU S, MILANFAR P.Kernel regression for image processing and reconstruction [J].IEEE Trans.Image Process, 2007, 16(2):349-366.导师简介:
<img src='龚卫国.TIF'/> 龚卫国(1957-), 男, 重庆人, 教授,博士生导师,1996年于日本东京工业大学获得工学博士学位, 1996年至2002年在日本NEC中央研究所工作,主要研究方向为模式识别及智能化信息。E-mail:wggong@cqu.edu.cn
0
浏览量
46
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构