浏览全部资源
扫码关注微信
苏州大学 机器人与微系统研究中心,江苏 苏州,215021
纸质出版日期:2014-03-25
移动端阅览
许晓威,陈立国,贺文元等. 数字微流控芯片半月形驱动电极的设计[J]. 光学精密工程, 2014,22(3): 633-640
XU Xiao-wei, CHEN Li-guo, HE Wen-yuan etc. Design of crescent driving electrode for digital electrowetting-on-dielectric device[J]. Editorial Office of Optics and Precision Engineering, 2014,22(3): 633-640
为了降低数字微流控芯片的驱动电压
将传统的方形驱动电极结构设计为半月形
研究了不同尺寸参数的半月形驱动电极降低驱动电压的效果。首先
根据介电湿润的基本原理分析了不同驱动电极形状对降低驱动电压的影响。接着
通过VOF法对液滴的运动过程进行建模和数值仿真。然后
根据数值仿真结果对比分析了不同结构参数时的半月形驱动电极随驱动时间的运动过程。最后
通过所研制的具有代表性的四种不同结构参数的半月形驱动电极芯片对驱动液滴的效果进行试验验证。实验结果表明:本文所制作的具有代表性的四种半月形驱动电极微流控芯片中
电极圆弧直径等于电极长度时的结构设计芯片能够比其他3种电极结构的芯片至少降低驱动电压15.6%
芯片降低驱动电压的效果最明显
而且可以在16 V的驱动电压下使1 μL去离子水液滴的运动速度达到1.6 cm/s
所以该尺寸设计为半月形驱动电极中的最优设计。得到的实验数据证明了半月形驱动电极微流控芯片中当电极圆弧直径等于电极长度时的电极结构设计降低芯片驱动电压的有效性。
MAIS J, JEBRAI L, MICHAEL S, et al..Digital microfluidics:a versatile tool for applications in chemistry, biology and medicine [J].Lab on a Chip, 2012, 12:2452-2463.
MOHAMED ABDELGAWAD, PHILIP PARK, A ARON R, et al..Optimization of device geometry in single-plate digital microfluidics [J].Journal of Applied Physics, 2009, 105 (9), 094-506.
BERTHIER J, CLEMENTA PH, FOUILLET Y, et al..Computer aided design of an EWOD microdevice [J].Sensors and Actuators A, 2006, A127:283-294.
CHUN-PENG, BO-YUAN FANG AND ZUNG-HANG WE.Influence of electrolytes on contact angles of droplets under electric field [J].Analyst, 2013, 138:2372-2377.
BIDDUT BHATTACHARJEE.Study of droplet splitting in an electrowetting based digital Systems [D].2012.
AHMADI A, NAJJARAN H, HOORFAR M, et al..Two-dimensional flow dynamics in digital microfluidic systems [J].Journal of Micromechanics and Microengineering, 2009, 19:065003(7pp).
SHIH-KANG FAN, CHENG-PU CHIU, AND PO-WEN HUANG.Transmittance tuning by particle chain polarization in electrowettng-driven droplets [J].Biomicr of Luidics, 2010, 4, 043011.
YIFAN L, WILLIMAM PARKES, ANTHONY J, et al..Room-Temperature Fabrication of Anodic Tantalum Pentoxide for Low-Voltage Electroweetting on Dielectric(EWOD) [J].Journal of Microelectromechanical Systems, 2008, 6(17).
JONG-HYEON CHANG, DAE YOUNG CHOI, JAMES JUNGHO PARK, et al..Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric [J].Microfluid and Nanofluid, 2010, 8:269-273.
BERTHIER J C, PEPONENT.A model for the determination of the dimensions of dents for jagged electrodes in electrowetting on dielectric Microsystems [J].2007, 1, 014104.
JANG L SH, HSU CH Y, CHEN CH H.Effect of electrode geometry on performance of EWOD device driven by battery-based system [J].2009, 11:1029-1036.
NEGAR RAJABI, ALI DOLATABADI.A novel electrode shape for electrowetting-based microfluidics[J].Colloids and Surfaces A:Physicochem.Eng.Aspects, 2010, 365:230-236.
CHEN CH H, TSAI S L, JANG L SH, et al..Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis[J].Sensors and Actuators:Chemical, 2011, 159:321-327.
CHANG J H, DONG S K, JAMS JUNGHO PARK.Simplified Ground-type Single Electrowetting Device for Droplet Transport [J].Journal of Electrical Engineering & Technology, 2011, 6(3):402-407.
JONG-HYEON CHANG, JAMS JUNGHO PARK.Twin-plate electrowetting for efficient digital microfluidics [J].Sensors and Actuator, 2010, 160:1581-1585.
BIDDUT BHATTACHARJEE, HONMAYOUN NAJJARAN.Droplet position control in digital microfluidic systems [J].Biomed Microdevices, 2010, 12:115-124.
BIDDUT BHATTACHARJEE, HOMAYOUN NAJJARAN.Simulation of Droplet Position Control in Digital Microfluidic Systems [J].Journal of Dynamic Systems, Measurement, and Control, JANUARY, 2010, 132:014501.
0
浏览量
48
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构