浏览全部资源
扫码关注微信
1.中国科学院 深海科学与工程研究所,海南 三亚 572000
2.中国科学院大学,北京 101408
3.中国科学院 合肥物质科学研究院 安徽光学精密机械研究所,安徽 合肥 230031
[ "吴兰艳(1997-),女,广西河池人,硕士研究生,2020年于中国科学技术大学获得学士学位,主要从事激光光谱技术与控制算法方面的研究。E-mail: wuly@idsse.ac.cn" ]
[ "杨晨光(1986-),男,安徽安庆人,高级工程师,2008年、2013年于华中科技大学分别获得学士和博士学位,主要从事光谱技术研究与海洋传感探测设备的研发。E-mail: yangcg@idsse.ac.cn" ]
纸质出版日期:2024-11-10,
收稿日期:2024-10-12,
修回日期:2024-11-06,
移动端阅览
吴兰艳,杨晨光,邓昊等.船载激光外差温室气体探测系统研制[J].光学精密工程,2024,32(21):3157-3165.
WU Lanyan,YANG Chenguang,DENG Hao,et al.Development of shipborne laser heterodyne greenhouse gas detection system[J].Optics and Precision Engineering,2024,32(21):3157-3165.
吴兰艳,杨晨光,邓昊等.船载激光外差温室气体探测系统研制[J].光学精密工程,2024,32(21):3157-3165. DOI: 10.37188/OPE.20243221.3157.
WU Lanyan,YANG Chenguang,DENG Hao,et al.Development of shipborne laser heterodyne greenhouse gas detection system[J].Optics and Precision Engineering,2024,32(21):3157-3165. DOI: 10.37188/OPE.20243221.3157.
针对海洋大气温室气体柱浓度的探测需求,研制了一套适合于船载平台应用的1.57 µm近红外激光外差辐射探测系统。通过低成本监控云台的图像跟踪算法简化图像处理与控制算法,降低算法延时,实现船载动平台的稳定太阳跟踪。提出了本振光温度阶梯调谐的激光外差测量方法减小跟踪误差影响的同时降低非散粒噪声,提高测量信噪比。南海海上实验表明,该系统实测最大跟踪误差为1.98 mrad,满足激光外差探测需求;同时,实现了走航与漂航过程中大气二氧化碳柱浓度的连续监测,测量结果波动小于±1.0×10
-
6
,波动范围仅为传统本振光电流调谐的1/12。该系统为海洋大气本底温室气体柱浓度探测提供了重要的技术支撑。
In response to the need for detecting column concentrations of greenhouse gases in the marine atmosphere, a 1.57 µm near-infrared laser heterodyne radiometric detection system suitable for shipborne platforms was developed. An image tracking algorithm was developed based on a low-cost surveillance pan-tilt system. The algorithm delay was reduced by sim
plifying the image processing and control algorithms. This enabled stable solar tracking on a shipborne dynamic platform. A measurement method with local oscillator laser temperature step tuning was proposed. This reduces the impact of tracking errors and non-short noise, thereby improving the signal-to-noise ratio of the measurements. Sea trials were conducted in the South China Sea using the system, and the maximum measured tracking error was 1.98 mrad, meeting the requirements for laser heterodyne detection. Continuous monitoring of atmospheric CO
2
column concentration was achieved during both cruising and drifting modes. The fluctuation in the measured CO
2
column concentration was less than ±1.0×10
-
6
, reducing the fluctuation range to 1/12 of that observed with traditional local oscillator laser current tuning. This system provides the technical means for subsequent detection of background greenhouse gas column concentrations in the marine atmosphere.
激光外差船载探测二氧化碳柱浓度本振光温度调谐
laser heterodyneshipborne detectionCO2 column concentrationlocal oscillator laser temperature tuning
HOEGH-GULDBERG O, BRUNO J F. The impact of climate change on the world's marine ecosystems[J]. Science, 2010, 328(5985): 1523-1528. doi: 10.1126/science.1189930http://dx.doi.org/10.1126/science.1189930
CODISPOTI L A. Interesting times for marine N2O[J]. Science, 2010, 327(5971): 1339-1340. doi: 10.1126/science.1184945http://dx.doi.org/10.1126/science.1184945
ZHUANG Q, MELILLO J M, MCGUIRE A D, et al. Net emissions of CH4 and CO2 in Alaska: implications for the region's greenhouse gas budget[J]. Ecological Applications, 2007, 17(1): 203-212. doi: 10.1890/1051-0761(2007)017[0203:neocac]2.0.co;2http://dx.doi.org/10.1890/1051-0761(2007)017[0203:neocac]2.0.co;2
ROBERTS C M, O'LEARY B C, MCCAULEY D J, et al. Marine reserves can mitigate and promote adaptation to climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6167-6175. doi: 10.1073/pnas.1701262114http://dx.doi.org/10.1073/pnas.1701262114
HELFTER C, MULLINGER N, VIENO M, et al. Country-scale greenhouse gas budgets using shipborne measurements: a case study for the UK and Ireland[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3043-3063. doi: 10.5194/acp-19-3043-2019http://dx.doi.org/10.5194/acp-19-3043-2019
SCHNEISING O, BERGAMASCHI P, BOVENSMANN H, et al. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results[J]. Atmospheric Chemistry and Physics, 2012, 12(3): 1527-1540. doi: 10.5194/ACP-12-1527-2012http://dx.doi.org/10.5194/ACP-12-1527-2012
WUNCH D, TOON G C, HEDELIUS J K, et al. Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long-term measurements of ethane and methane[J]. Atmospheric Chemistry and Physics, 2016, 16(22): 14091-14105. doi: 10.5194/acp-16-14091-2016http://dx.doi.org/10.5194/acp-16-14091-2016
NAKAGAWA H, AOKI S, SAGAWA H, et al. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii[J]. Planetary and Space Science, 2016, 126: 34-48. doi: 10.1016/j.pss.2016.04.002http://dx.doi.org/10.1016/j.pss.2016.04.002
KRABBE A, MEHLERT D, RÖSER H P, et al. SOFIA, an airborne observatory for infrared astronomy[J]. European Journal of Physics, 2013, 34(6): S161-S177. doi: 10.1088/0143-0807/34/6/s161http://dx.doi.org/10.1088/0143-0807/34/6/s161
WILSON E L, DIGREGORIO A J, VILLANUEVA G, et al. A portable miniaturized laser heterodyne radiometer (mini-LHR) for remote measurements of column CH(4) and CO2[J]. Applied Physics B, Lasers and Optics, 2019, 125(211): 11. doi: 10.1007/s00340-019-7315-8http://dx.doi.org/10.1007/s00340-019-7315-8
HOFFMANN A, HUEBNER M, MACLEOD N, et al. Spectrally resolved thermal emission of atmospheric gases measured by laser heterodyne spectrometry[J]. Optics Letters, 2018, 43(16): 3810-3813. doi: 10.1364/ol.43.003810http://dx.doi.org/10.1364/ol.43.003810
ROBINSON I, BUTCHER H L, MACLEOD N A, et al. Hollow waveguide-miniaturized quantum cascade laser heterodyne spectro-radiometer[J]. Optics Express, 2021, 29(2): 2299-2308. doi: 10.1364/OE.415371http://dx.doi.org/10.1364/OE.415371
SHEN F J, HU X Y, LU J, et al. Design of an all hollow fiber-coupled middle infrared laser heterodyne radiometer (LHR)[J]. Microwave and Optical Technology Letters, 2023, 65(5): 1324-1330. doi: 10.1002/mop.33484http://dx.doi.org/10.1002/mop.33484
LI J, XUE Z Y, LI Y, et al. Real-time measurement of atmospheric CO2, CH4 and N2O above rice fields based on laser heterodyne radiometers (LHR)[J]. Agronomy, 2023, 13(2): 373. doi: 10.3390/agronomy13020373http://dx.doi.org/10.3390/agronomy13020373
LI J, XUE Z Y, et al. Erbium-doped fiber amplifier (EDFA)-assisted laser heterodyne radiometer (LHR) working in the shot-noise-dominated regime[J]. Optics Letters, 2023, 48(20): 5229. doi: 10.1364/ol.501761http://dx.doi.org/10.1364/ol.501761
WANG J J, TU T, ZHANG F, et al. External-cavity diode laser-based near-infrared broadband laser heterodyne radiometer for remote sensing of atmospheric CO2[J]. Optics Express, 2023, 31(6): 9251-9263. doi: 10.1364/oe.482131http://dx.doi.org/10.1364/oe.482131
SHEN F J, HU X Y, LU J, et al. Performance characterization of a fully transportable mid-infrared laser heterodyne radiometer (LHR)[J]. Sensors, 2023, 23(2): 978. doi: 10.3390/s23020978http://dx.doi.org/10.3390/s23020978
DENG H, LI M X, HE Y B, et al. Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 230: 118071. doi: 10.1016/j.saa.2020.118071http://dx.doi.org/10.1016/j.saa.2020.118071
DENG H, YANG C G, XU Z Y, et al. Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH(4), H2O and O(2) in the atmospheric column[J]. Optics Express, 2021, 29(2): 2003-2013. doi: 10.1364/oe.413035http://dx.doi.org/10.1364/oe.413035
DENG H, LI R S, LIU H, et al. Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases[J]. Optics Letters, 2022, 47(17): 4335-4338. doi: 10.1364/ol.468198http://dx.doi.org/10.1364/ol.468198
李仁仕, 邓昊, 金谷雨, 等. 本振激光强度调制激光外差光谱遥测技术研究[J]. 环境工程, 2023, 41(10): 9-13.
LI R S, DENG H, JIN G Y, et al. Research on laser heterodyne spectrum telemetry technology based on local oscillator laser intensity modulation[J]. Environmental Engineering, 2023, 41(10): 9-13.(in Chinese)
ZENEVICH S, GAZIZOV I S, SPIRIDONOV M V, et al. IVOLGA: a high-resolution heterodyne near-infrared spectroradiometer for Doppler studies of Venus atmospheric dynamics[C]. Optics, Photonics and Digital Technologies for Imaging Applications VII. April 3-May 16, 2022. Strasbourg, France. SPIE, 2022: 52. doi: 10.1117/12.2632630http://dx.doi.org/10.1117/12.2632630
PARVITTE B, ZÉNINARI V, THIÉBEAUX C, et al. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(5): 1193-1213. doi: 10.1016/j.saa.2003.07.006http://dx.doi.org/10.1016/j.saa.2003.07.006
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构