浏览全部资源
扫码关注微信
1.上海理工大学 医疗器械与食品学院 教育部医用光学技术与 仪器重点实验室,上海 200093
2.上海理工大学 上海市介入医疗器械工程研究中心,上海 200093
[ "项华中(1986-),男,安徽安庆人,博士,副教授,2012年、2016年于上海理工大学分别获得硕士、博士学位,主要从事非球面和自由曲面镜片设计等方面的研究。E-mail: xiang3845242@usst.edu.cn" ]
张 露(1993-),女,江苏徐州人,硕士研究生,2018年于上海理工大学获得学士学位,主要从事医学光学与视光学的研究。E-mail: zhanglumg@outlook.com
收稿日期:2020-10-03,
修回日期:2020-11-20,
纸质出版日期:2021-05-15
移动端阅览
项华中,张露,高健东等.负缩镜片设计方法对比[J].光学精密工程,2021,29(05):967-974.
XIANG Hua-zhong,ZHANG Lu,GAO Jian-dong,et al.Comparison of design methods for negative lenticular lens[J].Optics and Precision Engineering,2021,29(05):967-974.
项华中,张露,高健东等.负缩镜片设计方法对比[J].光学精密工程,2021,29(05):967-974. DOI: 10.37188/OPE.2020.0500.
XIANG Hua-zhong,ZHANG Lu,GAO Jian-dong,et al.Comparison of design methods for negative lenticular lens[J].Optics and Precision Engineering,2021,29(05):967-974. DOI: 10.37188/OPE.2020.0500.
通过对比3种负缩透镜优化设计方法来选择易精密加工、质量减轻和佩戴美观的高度近视镜片。在相同的光学参数下,运用双三次样条插值法、高阶多项式和几何构造法设计了3组
-
10 m
-1
的负缩镜片,对比了矢高和光焦度的分布,加工了设计的负缩镜片,比较了3种设计镜片的中心定焦区、最大厚度和边缘厚度。几何构造法镜片中心定焦区面积与双三次样条插值法相同,比高阶多项式大20.99%,最大厚度较高阶多项式法薄0.7%,比双三次样条插值法薄13.26%。同时,几何构造法边缘厚度较高阶多项式法薄80.3%,比双三次样条插值法薄92.42%;双三次样条插值法的中心光焦度与仿真结果的差值为0.06 m
-1
,几何构造法的差值为0.11 m
-1
,高阶多项式的差值为0.15 m
-1
。几何构造法设计的镜片能够满足佩戴者的需求,亦适用于其他类型光学元件的设计。
The purpose of this study was to compare three different design methods for negative lenticular lenses and identify lenses for high myopia that can be fabricated precisely and easily, are low weight, and are aesthetically pleasing. Three optimized design methods for negative lenticular lenses—the bicubic spline interpolation, high-order polynomial, and geometric construction methods—were proposed. Using identical optical parameters, three groups of
-
10 m
-1
negative lenticular lenses were designed, and the sagitta and the power distribution map were compared. The designed negative lenticular lenses were then fabricated, and the central optical area, maximum thickness, and edge thickness were compared. The central optical area obtained via the geometric construction method was equal to that obtained via the bicubic spline interpolation method; however, this area was 20.99% greater than that obtained using the high-order polynomial method. Furthermore, the maximum thickness obtained using the geometric construction method is 0.7% less than that obtained via the high-order polynomial method, which, in turn, is 13.26% less than that afforded by the bicubic spline interpolation method. The edge thickness under the geometric construction method is 80.3% less than that under the higher-order polynomial method, which, in turn, is 92.42% less than that obtained via the bicubic spline interpolation method. The differences between the central optical power in the simulation and the central optical power afforded by the bicubic spline interpolation, geometric construction, and high-order polynomial methods are 0.06, 0.11, and 0.15 m
-1
, respectively. Thus, it was concluded that the geometric construction method meets the requirements of the wearers. These methods are also suitable for designing other types of optical components.
ELISE N. HARB , CRISTINE F. WILDSOET . Origins of refractive errors: environmental and genetic factors [J]. Annu. Rev. Vis. Sci , 2019 , 5 : 47 - 72 .
SUN J , ZHOU J , ZHAO P , et al . High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai [J]. Investigative Ophthalmology & Visual Science , 2012 , 53 ( 12 ): 7504 - 7509 .
IKUNO Y . Overview of the complications of high myopia [J]. Retina (Philadelphia, Pa) , 2017 , 37 ( 12 ): 2347 - 2351 .
FLITCROFT D I . The complex interactions of retinal, optical and environmental factors in myopia aetiology [J]. Progress in Retinal and Eye Research , 2012 , 31 ( 6 ): 622 - 660 .
马思齐 , 巩岩 , 李丽 , 等 . 应用于眼轴参数测量的光学相干层析系统 [J]. 光学 精密工程 , 2019 , 27 ( 6 ): 1318 - 1326 .
MA S Q , GONG Y , LI L , et al . Optical coherence tomography system for measurement of eye axial parameters [J]. Opt. Precision Eng. , 2019 , 27 ( 6 ): 1318 - 1326 . (in Chinese)
JALIE SMSAM . Principles of Ophthalmic Lenses [M]. Association of Dispensing Opticians , 1984 .
DURSTELER J C . Aspherics in spectacle lenses [J]. Advanced Optical Technologies , 2016 , 5 : 461 - 469
唐瓦 , 邓伟杰 , 李锐钢 , 等 . 离子束抛光高陡度离轴非球面的去除函数修正 [J]. 光学 精密工程 , 2015 , 23 ( 6 ): 1572 - 1579 .
TANG W , DENG W J , LI R G , et al . Correction of removal function of ion beam figuring highly steep off-axis asphere [J]. Opt. Precision Eng. , 2015 , 23 ( 6 ): 1572 - 1579 . (in Chinese)
陈利 , 杨红 , 刘波 , 等 . 超高度近视镜片边缘厚度优化的对比分析研究 [J]. 激光杂志 , 2015 , 36 ( 5 ): 14 - 16 .
CHEN L , YANG H , LIU B , et al . Comparative analysis of high myopia lens edge thickness optimization [J]. Laser Journal , 2015 , 36 ( 5 ): 14 - 16 . (in Chinese)
许小勇 , 钟太勇 . 三次样条插值函数的构造与Matlab实现 [J]. 兵工自动化 , 2006 , 25 ( 11 ): 76 - 78 .
XU X Y , ZHONG T Y . Construction and realization of cubic spline interpolation function [J]. Ordnance Industry Automation , 2006 , 25 ( 11 ): 76 - 78 . (in Chinese)
孟晓辉 , 王永刚 , 李文卿 , 等 . Φ 420 mm高次非球面透镜的加工与检测 [J]. 光学 精密工程 , 2016 , 24 ( 12 ): 3068 - 3075 .
MENG X H , WANG Y G , LI W Q , et al . Fabricating and testing of Φ 420 mm high-order aspheric lens [J]. Opt. Precision Eng. , 2016 , 24 ( 12 ): 3068 - 3075 . (in Chinese)
LI X M , ZHANG J C . A joint method for the maximum inscribed circle and minimum circumscribed circle [J]. Measurement . 2016 , 87 : 189 - 193 .
解兰昌 . 谈谈标准镜头和人眼视角 [J]. 照相机 , 2002 ( 10 ): 61 .
XIE L CH . Talk about standard lens and human eye [J]. Camera Magezine Inc , 2002 ( 10 ): 61 . (in Chinese)
李昂 , 王永刚 , 邬志强 , 等 . 光学加工过程中高次非球面的三坐标测量数据处理 [J]. 中国光学 , 2020 , 13 ( 2 ): 302 - 312 .
LI A , WANG Y G , WU ZH Q , et al . Data processing of high-order aspheric surface measurements using CMM in optical fabrication [J]. Chinese Journal of Optics , 2020 , 13 ( 2 ): 302 - 312 . (in Chinese)
徐领娣 , 房安利 , 于建海 , 等 . 微晶材质自由曲面反射镜精密超声铣磨加工技术 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2564 - 2570 .
XU L D , FANG A L , YU J H , et al . Ultrasonic-vibration assisted grinding of a zerodour freeform optical mirror [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2564 - 2570 . (in Chinese)
0
浏览量
291
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构