1.上海大学 精密机械工程系,上海 200444
2.近地面探测技术重点实验室,江苏 无锡 214035
[ "孙建美(1993-),女,山东潍坊人,硕士,助理实验员,2016年于山东科技大学获得学士学位,2018年于上海大学获得硕士学位,主要从事光纤传感检测方面的研究。E-mail: jianmeisun@shu.edu.cn" ]
[ "方 东(1971-),男,江苏无锡人,博士,高级工程师,1993年于东南大学获得学士学位,主要从事近地面探测技术的研究。E-mail: fang_dong@126.com" ]
扫 描 看 全 文
孙建美, 陈斐璐, 杨辰烨, 等. 基于超小GRIN光纤探头的F-P干涉仪测振实验[J]. 光学精密工程, 2021,29(7):1518-1526.
Jian-mei SUN, Fei-lu CHEN, Chen-ye YANG, et al. F-P interferometer vibration measurement experimental system based on ultra-small grin fiber probe[J]. Optics and Precision Engineering, 2021,29(7):1518-1526.
孙建美, 陈斐璐, 杨辰烨, 等. 基于超小GRIN光纤探头的F-P干涉仪测振实验[J]. 光学精密工程, 2021,29(7):1518-1526. DOI: 10.37188/OPE.2020.0565.
Jian-mei SUN, Fei-lu CHEN, Chen-ye YANG, et al. F-P interferometer vibration measurement experimental system based on ultra-small grin fiber probe[J]. Optics and Precision Engineering, 2021,29(7):1518-1526. DOI: 10.37188/OPE.2020.0565.
搭建基于超小GRIN光纤探头的F-P干涉仪测振的实验系统,采用高精度纳米位移台作为被测振动体目标,在解析基于超小GRIN光纤探头的集成化F-P干涉仪工作性能的基础上,对被测振动体的微小振动进行多次实验测量,采集实验测量数据并分析该集成化F-P干涉仪的实验性能。实验结果显示,在给定实验条件下,该F-P光纤干涉仪在振幅为200~300 nm时的性能参数较好,线性度最小为0.42%,对应的灵敏度为7.507 V/μm,重复性标准差最大为0.232 V;在10~100 nm与350~500 nm,干涉仪测振系统有较好的重复性,其标准差小于0.102 V。该F-P干涉仪系统具有测量微小振动的可行性,有望应用在微小振动和位移等精确测量领域。
An integrated F-P interferometer vibration measurement system based on the ultra-small GRIN fiber probe and its performance were studied. First, a high-precision nano-stage was used as the vibrating target to be measured and a corresponding vibration measurement system was built to measure and analyze the small vibrations. This measurement system was then used to perform multiple measurements of the tiny vibrations generated by the vibrating target. The experimental data were then processed to analyze the performance of the F-P interferometer. The results show that under the given experimental conditions, the F-P interferometer exhibits desirable performance in the vibration amplitude range of 200-300 nm; its minimum linearity is 0.42%, corresponding sensitivity is 7.507 V/μm, and maximum repeatability standard deviation is 0.232 V. Further, in the vibration amplitude ranges of 10-100 nm and 350-500 nm, the F-P interferometer has better repeatability and its standard deviation is less than 0.102 V. Therefore, the F-P interference vibration measurement system based on the ultra-small GRIN fiber probe can be used to measure small vibrations, thereby providing an experimental basis for further research on its application in the precise measurement of small vibrations and displacements.
光纤传感F-P干涉仪超小光纤探头微小振动测量
optical fiber sensingF-P interferometerultra-small fiber probemicro vibration measurement
TIAN K, YU J, WANG X, et al. Miniature Fabry-Perot interferometer based on a movable microsphere reflector[J]. Optics Letters, 2020, 45(3): 787-790.
LI W W, LIANG T, JIA P G, et al. Fiber-optic Fabry-Perot pressure sensor based on sapphire direct bonding for high-temperature applications[J]. Applied Optics, 2019, 58(7): 1662-1666.
冯文林, 彭进, 余佳浩, 等. 端面腐蚀的双法布里-珀罗光纤温度传感器[J]. 光学 精密工程, 2019, 27(4): 766-770.
FENG W L, PENG J, YU J H, et al. Double Fabry-Pérot fiber optic temperature sensor based on end-face corrosion[J]. Opt. Precision Eng., 2019, 27(4): 766-770.(in Chinese)
CHEN P C, SHU X W. Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing[J]. Optics Express, 2018, 26(5): 5292-5299.
赵江海, 章小建. 双Fabry-Perot干涉腔型光纤声发射传感器[J]. 光学 精密工程, 2015, 23(11): 3069-3076.
ZHAO J H, ZHANG X J. Fiber-optic acoustic emission sensors with dual Fabry-Perot interferometric cavities[J]. Opt. Precision Eng., 2015, 23(11): 3069-3076.(in Chinese)
LIU Y Y, JING Z G, JING Z G, et al. Miniature fiber-optic tip pressure sensor assembled by hydroxide catalysis bonding technology[J]. Optics Express, 2020, 28(2): 948-958.
FU X, LU P, ZHANG J, et al. Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing[J]. Optics Express, 2019, 27(17): 24300-24310.
LIU S, WANG Y, LIAO C, et al. Nano silica diaphragm in-fiber cavity for gas pressure measurement[J]. Scientific Reports, 2017, 7(1): 787.
HAM S, BRITUN N, KIM D, et al. Design of an imaging Fabry-Pérot interferometer for the VEST edge plasma temperature measurement.[J]. Review of Scientific Instruments, 2018, 89:10D108.
SHAO Z H, QIAO X G, CHEN F Y, et al. Ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer using a beam collimator and its application for ultrasonic imaging of seismic physical models[J]. Chinese Physics B, 2018, 27(9):132-140.
ZHANG W L, CHEN F Y, MA W W, et al. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor[J]. Optics Express, 2018, 26(8): 11025-11033.
WANG W, SHEN Y D, GUO T, et al. Highly sensitive fiber-optic accelerometer using a micro suspended-core fiber[J]. Applied Optics, 2019, 58(21): 5852-5858.
WANG C, SUN J M, YANG C Y, et al. Research on a novel fabry-perot interferometer model based on the ultra-small gradient-index fiber probe[J]. Sensors, 2019, 19(7):1538.
WANG C , SUN J M , SUN F , et al. Coupling efficiency of ultra-small gradient-index fiber probe[J]. Optics Communications, 2017, 389:265-269.
WANG C , XU T T , BI S B , et al. Measurement of the focusing constant of gradient-index fiber lens and its application in developing GRIN fiber probes[J]. Measurement, 2016, 90:542-548.
王驰, 许婷婷, 毕书博, 等. 测量自聚焦光纤透镜聚焦常数的曲线拟合算法[J]. 光学 精密工程, 2015, 23(12): 3309-3315.
WANG CH, XU T T, BI SH B, et al. Curve-fitting algorithm of measuring focusing constant of gradient-index fiber lens[J]. Opt. Precision Eng., 2015, 23(12): 3309-3315.(in Chinese)
WANG CH,KUANG B, SUN J M, et al. Research progress on ultra-small self-focusing optical fiber probe[J]. Chinese Optics, 2018, 11(6): 875-888.
李亮宇. 浅谈两种常用公式处理实验标准偏差的方法[J]. 轻工标准与质量, 2013(4): 52-53.
LI L Y. Talking about the methods of two common formulas to deal with the experimental standard deviation[J]. Standard & Quality of Light Industry, 2013(4): 52-53.(in Chinese)
0
浏览量
206
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构