浏览全部资源
扫码关注微信
1.西安工程大学 电子信息学院, 陕西 西安 710048
2.北京大学 信息科学技术学院, 北京 100871
[ "李云红(1974-), 女, 辽宁锦州人, 教授, 博士, 2010年于哈尔滨工业大学获得博士学位, 主要从事红外热像技术、数字图像处理和信号与信息处理技术的研究。E-mail:hitliyunhong@163.com" ]
[ "李弘昊(1994-), 男, 陕西西安人, 硕士研究生, 2016年于西安工程大学获得学士学位, 主要从事信息处理与深度学习应用方面的研究。E-mail:815957624@qq.com" ]
收稿日期:2019-12-10,
修回日期:2019-12-23,
录用日期:2019-12-23,
纸质出版日期:2020-07-15
移动端阅览
李云红, 李弘昊, 文达, 等. 卷积循环神经网络的光学晶格中超冷原子动量分布预测[J]. 光学 精密工程, 2020,28(7):1480-1484.
Yun-hong LI, Hong-hao LI, Da WEN, et al. Prediction of momentum distribution of supercooled atoms in optical lattice using convolutional-recurrent network[J]. Optics and precision engineering, 2020, 28(7): 1480-1484.
李云红, 李弘昊, 文达, 等. 卷积循环神经网络的光学晶格中超冷原子动量分布预测[J]. 光学 精密工程, 2020,28(7):1480-1484. DOI: 10.37188/OPE.20202807.1480.
Yun-hong LI, Hong-hao LI, Da WEN, et al. Prediction of momentum distribution of supercooled atoms in optical lattice using convolutional-recurrent network[J]. Optics and precision engineering, 2020, 28(7): 1480-1484. DOI: 10.37188/OPE.20202807.1480.
相位作为光学晶格中玻色-爱因斯坦凝体的波函数中的重要参数,在实验中无法通过吸收成像或者原位成像从动量空间原子分布中直接得到波函数的相位信息。为了研究一维光晶格中玻色-爱因斯坦凝体相位分布对动量空间原子分布的影响,建立了深度学习网络模型。首先,通过理论计算得到的32 000组数据作为训练集和验证集。然后,在分析波函数的相位特征与动量空间的基础上,提出卷积循环神经网络模型进行光晶格中超冷原子动量预测的方法。经验证,模型训练得到的结果与理论求解薛定谔方程得到的结果相差1.76,相较BP(Back Propagation)神经网络结果,平均误差降低了83%,所得结论为机器学习在物理学领域的应用提供了新的思路。
Phase information is an important parameter in the wave function of a Bose-Einstein condensate in an optical lattice. However
in experiments
the phase information of the wave function cannot be obtained directly from the atom distribution in momentum space by absorption imaging or in-situ imaging. Thus
a deep learning network model was developed to study the influence of the phase distribution of a Bose-Einstein condensate on the atom distribution in momentum space. Thirty-two thousand data sets obtained by theoretical calculations were used as training and verification sets. Based on the analysis of the phase characteristics and momentum space of the wave function
a method for predicting the momentum of supercooled atoms in an optical lattice was developed using a convolutional recurrent neural network model. After the model verification
a difference between the model training and Schrodinger equation results is 1.76
which is 83% less than the average error of a back propagation neural network. Our approach provides a new application of machine learning in the field of physics.
X J ZHOU , SH J JIN , J SCHMIEDMAY . Shortcut loading a Bose-Einstein condensate into an optical lattice . New Journal of Physics , 2018 . 20 ( 5 ): 055005 - 055028 . https://iopscience.iop.org/article/10.1088/1367-2630/aac11b https://iopscience.iop.org/article/10.1088/1367-2630/aac11b .
N POLI , F Y WANG , M G TARALLO , 等 . Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter . Physical Review Letters , 2011 . 106 ( 3 ): 038501 - 038505 . http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1010.2033 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1010.2033 .
S L CAMPBELL , R B HUTSON , G E MARTI , 等 . A Fermi-degenerate three-dimensional optical lattice clock . Science , 2017 . 358 ( 6359 ): 90 - 94 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c137fe1abb681ffe7b22ba5effa6d45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c137fe1abb681ffe7b22ba5effa6d45 .
SH J JIN , X X GUO , P PENG , 等 . Finite temperature phase transition in a cross-dimensional triangular lattice . New Journal Physics , 2019 . 21 ( 7 ): 073015 - 073022 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9523895 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9523895 .
L ASTERIA , D T TRAN , T OZAWA , 等 . Measuring quantized circular dichroism in ultracold topological matter . Nature Physics , 2019 . 15 449 - 454 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f005af01c70abd1446a9273538b22c1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f005af01c70abd1446a9273538b22c1 .
I BLOCH , J DALIBARD , W ZWERGER . Many-body physics with ultracold gases . Reviews of Modern Physics , 2008 . 80 ( 3 ): 885 - 964 . http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0704.3011 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0704.3011 .
D HU , L X NIU , SH J JIN , 等 . Ramsey interferometry with trapped motional quantum states . Comm. Phys , 2018 . 12 ( 1 ): 29 - 38 . https://www.nature.com/articles/s42005-018-0030-7 https://www.nature.com/articles/s42005-018-0030-7 .
E P GROSS . Hydrodynamics of a superfluid Condensate . Journal of Mathematical Physics , 1963 . 4 ( 2 ): 195 - 207 . http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0009282 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0009282 .
M I JORDAN , T M MITCHELL . Machine learning:Trends, perspectives, and prospects . Science , 2015 . 349 ( 6245 ): 255 - 260 . http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026876149/ http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026876149/ .
胡 越 , 罗 东阳 , 花 奎 , 等 . 关于深度学习的综述与讨论 . 智能系统学报 , 2019 . 14 ( 1 ): 1 - 19 . http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201901001 http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201901001 .
Y HU , D Y LUO , K HUA , 等 . Review and discussion on deep learning . Journal of intelligent systems , 2019 . 14 ( 1 ): 1 - 19 . http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201901001 http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201901001 .
B P ABBOTT . Observation of gravitational waves from a binary black hole merger . Physical Review Letters , 2016 . 116 ( 6 ): 061102 - 061118 . http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1002.2689 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1002.2689 .
M PASQUATO . Detecting intermediate mass black holes in globular clusters with machine learning . Memorie della Societa Astronomica Italiana , 2016 . 87 571 - 574 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001336899 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001336899 .
P BROECKER , J CARRASQUILLA , R G MELKO , 等 . Machine learning quantum phases of matter beyond the fermion sign problem . Scientific Reports , 2017 . 7 ( 1 ): 8823 - 8831 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001378502 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001378502 .
K CH'NG , J CARRASQUILLA , R G MELKO , 等 . Machine Learning Phases of Strongly Correlated Fermions . Physical Review X , 2017 . 7 ( 3 ): 031038 - 031047 . https://www.researchgate.net/profile/Kelvin_Chng/publication/307955088_Machine_Learning_Phases_of_Strongly_Correlated_Fermions/links/59af0a5a0f7e9bf3c7238de1/Machine-Learning-Phases-of-Strongly-Correlated-Fermions.pdf https://www.researchgate.net/profile/Kelvin_Chng/publication/307955088_Machine_Learning_Phases_of_Strongly_Correlated_Fermions/links/59af0a5a0f7e9bf3c7238de1/Machine-Learning-Phases-of-Strongly-Correlated-Fermions.pdf .
潘 仙张 , 张 石清 , 郭 文平 . 多模深度卷积神经网络应用于视频表情识别 . 光学 精密工程 , 2019 . 27 ( 4 ): 963 - 970 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201904023 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201904023 .
X ZH PAN , SH Q ZHANG , W P GUO . Application of multi-mode deep convolution neural network to video expression recognition . Opt. Precision Eng , 2019 . 27 ( 4 ): 963 - 970 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201904023 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201904023 .
李 宇 , 刘 雪莹 , 张 洪群 , 等 . 基于卷积神经网络的光学遥感图像检索 . 光学 精密工程 , 2018 . 26 ( 1 ): 200 - 207 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024 .
Y LI , X Y LIU , H Q ZHANG , 等 . Optical remote sensing image retrieval based on convolutional neural network . Opt. Precision Eng , 2018 . 26 ( 1 ): 200 - 207 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024 .
方 明 , 孙 腾腾 , 邵 桢 . 基于改进YOLOv2的快速安全帽佩戴情况检测 . 光学 精密工程 , 2019 . 27 ( 5 ): 1196 - 1205 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905023 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905023 .
M FANG , T T SUN , ZH SHAO . Fast helmet wearing detection based on improved yolov2 . Opt. Precision Eng , 2019 . 27 ( 5 ): 1196 - 1205 . http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905023 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201905023 .
李 云红 , 梁 思程 , 任 劼 , 等 . 基于循环神经网络变体和卷积神经网络的文本分类方法 . 西北大学学报:自然科学版 , 2019 . 49 ( 4 ): 573 - 579 . http://d.old.wanfangdata.com.cn/Periodical/xbdxxb201904009 http://d.old.wanfangdata.com.cn/Periodical/xbdxxb201904009 .
Y H LI , S CH LIANG , J REN , 等 . Text classification method based on cyclic neural network variants and convolutional neural network . Journal of Northwestern University:Natural Science Edition , 2019 . 49 ( 4 ): 573 - 579 . http://d.old.wanfangdata.com.cn/Periodical/xbdxxb201904009 http://d.old.wanfangdata.com.cn/Periodical/xbdxxb201904009 .
C H SHAN , X R GUO , J OU . Deep leaky single-peaked triangle neural networks . International Journal of Control Automation and Systems , 2019 . 17 ( 8 ): 2693 - 2701 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1c072315664f05d006a4788acf29904 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1c072315664f05d006a4788acf29904 .
0
浏览量
745
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构