浏览全部资源
扫码关注微信
长春师范大学 计算机科学技术学院, 吉林 长春 130032
[ "李清亮(1988-), 男, 博士, 副教授, 硕士生导师, 中国电子学会计算机视觉专业技术人员, 2016年于吉林大学获得博士学位, 主要从事大气物理AI预报, 机器学习和图像处理等方面的研究。E-mail:liqingliang@mail.ccsfu.edu.cn" ]
[ "耿庆田(1972-), 男, 博士, 教授, 硕士生导师, 2016年于吉林大学获得博士学位, 主要从事机器学习和汽车电子等方面的研究。E-mail:qtgeng@mail.ccsfu.edu.cn" ]
[ "于繁华(1970-), 男, 博士, 教授, 硕士生导师, 吉林省高校新世纪人才, 长春市第五批有突出贡献专家, 2008年于吉林大学交通学院获得博士学位, 主要从事大气物理AI预报, 机器学习和智能优化等方面的研究。E-mail:yufanhua@163.com" ]
收稿日期:2020-03-16,
修回日期:2020-05-24,
录用日期:2020-5-24,
纸质出版日期:2020-10-25
移动端阅览
李清亮, 蔡凯旋, 耿庆田, 等. 极限梯度提升和长短期记忆网络相融合的土壤温度预测[J]. 光学 精密工程, 2020,28(10):2337-2348.
Qing-liang LI, Kai-xuan CAI, Qing-tian GENG, et al. Estimation of soil temperature based on XGBoost and LSTM methods[J]. Optics and precision engineering, 2020, 28(10): 2337-2348.
李清亮, 蔡凯旋, 耿庆田, 等. 极限梯度提升和长短期记忆网络相融合的土壤温度预测[J]. 光学 精密工程, 2020,28(10):2337-2348. DOI: 10.37188/OPE.20202810.2337.
Qing-liang LI, Kai-xuan CAI, Qing-tian GENG, et al. Estimation of soil temperature based on XGBoost and LSTM methods[J]. Optics and precision engineering, 2020, 28(10): 2337-2348. DOI: 10.37188/OPE.20202810.2337.
土壤温度是地球科学多个领域的重要变量。其时空变化受多种环境因素影响,这对土壤温度的准确预测带来巨大挑战。以机器学习为核心的数据驱动方法,在土壤温度预测中是重要研究领域,为基于物理过程模型提供重要补充。然而目前针对土壤温度影响因素量性研究较少,因此本文提出XGBoost-LSTM的数据驱动方法。基于极限梯度提升算法(XGBoost)分析土壤温度影响因素的重要性,然后根据影响因素重要性依次组合,并输入至长短期记忆网络(LSTM),得到最优预测模型并实现土壤温度预测。最后在长白山和海北两个气象站完成实验,本文方法的最优均方根误差为2.234、平均绝对误差为1.716、纳什效率系数为0.932、LMI系数为0.729和威尔莫特一致性指数为0.983。结果表明本文提出的XGBoost-LSTM预测模型与目前土壤温度中常用的数据驱动模型相比,均表现出更高的精确度。
Soil temperature is an important variable in Earth sciences. The temporal and spatial variations in soil temperature are affected by numerous factors
resulting in various challenges in soil temperature prediction. For soil temperature prediction
the data-driven machine learning method is valuable and can be an important complement to physics-based process models. However
no extensive studies have been carried out on the importance of environmental factors on soil temperature. In this study
a data-driven XGBoost-LSTM method is proposed. The weights of the meteorological inputs are computed based on XGBoost
and then
the combination of meteorological inputs based on their weights is applied to obtain an optimal model by the LSTM method. An experiment is carried out at two stations in China (Changbai Mountain and Haibei). The most accurate performance for soil temperature estimation is attained
with highest values of NS = 0.932
WI = 0.983
and LMI = 0.729 and lowest values of RMSE and MAE of 2.234 and 1.716
respectively. These results show that the proposed model is generally superior to other state-of-the-art predictive models.
Y FENG , N CUI , W HAO , 等 . Estimation of soil temperature from meteorological data using different machine learning models . Geoderma , 2019 . 338 67 - 77 . DOI: 10.1016/j.geoderma.2018.11.044 http://doi.org/10.1016/j.geoderma.2018.11.044 .
H SANIKHANIA , R C DEOB , Z M YASEENC , 等 . Non-tuned data intelligent model for soil temperature estimation:A new approach . Geoderma , 2018 . 330 52 - 64 . DOI: 10.1016/j.geoderma.2018.05.030 http://doi.org/10.1016/j.geoderma.2018.05.030 DOI: 10.1016/j.geoderma.2018.05.030 http://doi.org/10.1016/j.geoderma.2018.05.030 .
J Y CORNU , L DENAIX , J LACOSTE , 等 . Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil . Environmental Science and Pollution Research , 2016 . 23 2997 - 3007 . DOI: 10.1007/s11356-015-5432-4 http://doi.org/10.1007/s11356-015-5432-4 .
Y KIM , J C STILL , C V HANSON , 等 . Canopy skin temperature variations in relation to climate, soil temperature, and carbon flux at a ponderosa pine forest in central Oregon . Agricultural and Forest Meteorology , 2016 . 226 161 - 173 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e3182e11b59bae11cbe2f01f140a915 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e3182e11b59bae11cbe2f01f140a915 .
J YANGA , H BUSEN , H SCHERB , 等 . Modeling of radon exhalation from soil influenced by environmental parameters . Science of The Total Environment , 2019 . 656 1304 - 1311 . DOI: 10.1016/j.scitotenv.2018.11.464 http://doi.org/10.1016/j.scitotenv.2018.11.464 .
BHADANI P, VASHISHT V, SOIL MOISTURE. Temperature and humidity measurement using arduino[C]. The 9 th International Conference on Cloud Computing, Data Science & Engineering, Noida, India , 2019: 567-571.
G HU , Z LIN , X WU , 等 . An analytical model for estimating soil temperature profiles on the Qinghai-Tibet plateau of China . Journal of Arid Land , 2016 . 8 ( 2 ): 232 - 240 . DOI: 10.1007/s40333-015-0058-4 http://doi.org/10.1007/s40333-015-0058-4 .
L L LIANG , D A RIVEROS-IREGUI , R E EMANUEL , 等 . A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions . Geophys. Res , 2017 . 119 407 - 417 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01b660b112673ff89f206b8a4f4542e9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01b660b112673ff89f206b8a4f4542e9 .
徐 英 , 谷 雨 , 彭 冬亮 , 等 . 基于DRGAN和支持向量机的合成孔径雷达图像目标识别 . 光学 精密工程 , 2020 . 28 ( 3 ): 727 - 735 . http://ope.lightpublishing.cn/thesisDetails?columnId=2126352&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=2126352&Fpath=&index=-1&l=zh .
Y XU , Y GU , D L PENG , 等 . SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine . Opt. Precision Eng. , 2020 . 28 ( 3 ): 727 - 735 . http://ope.lightpublishing.cn/thesisDetails?columnId=2126352&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=2126352&Fpath=&index=-1&l=zh .
闫 敬文 , 陈 宏达 , 刘 蕾 . 高光谱图像分类的研究进展 . 光学 精密工程 , 2019 . 27 ( 3 ): 680 - 693 . http://ope.lightpublishing.cn/thesisDetails?columnId=1424316&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=1424316&Fpath=&index=-1&l=zh .
J W YAN , H D CHEN , L LIU . Overview of hyperspectral image classification . Opt. Precision Eng. , 2019 . 27 ( 3 ): 680 - 693 . http://ope.lightpublishing.cn/thesisDetails?columnId=1424316&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=1424316&Fpath=&index=-1&l=zh .
魏 彤 , 周 银鹤 . 基于机器学习识别与标记分水岭分割的盲道图像定位 . 光学 精密工程 , 2019 . 27 ( 1 ): 201 - 210 . http://ope.lightpublishing.cn/thesisDetails?columnId=1424834&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=1424834&Fpath=&index=-1&l=zh .
T WEI , Y H ZHOU . Blind sidewalk image location based on machine learning recognition and marked watershed segmentation . Opt. Precision Eng. , 2019 . 27 ( 1 ): 201 - 210 . http://ope.lightpublishing.cn/thesisDetails?columnId=1424834&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=1424834&Fpath=&index=-1&l=zh .
G MIHALAKAKOU . On estimating soil surface temperature profiles . Energy and Buildings , 2002 . 34 ( 3 ): 251 - 259 . DOI: 10.1016/S0378-7788(01)00089-5 http://doi.org/10.1016/S0378-7788(01)00089-5 DOI: 10.1016/S0378-7788(01)00089-5 http://doi.org/10.1016/S0378-7788(01)00089-5 .
O KISI , H SANIKHANI . Modellinglong-termmonthlytemperaturesby several data-driven methods using geographical inputs . Int. J. Climatol , 2015 . 35 ( 13 ): 3834 - 3846 . DOI: 10.1002/joc.4249 http://doi.org/10.1002/joc.4249 .
S O HUR , W T KIM , KH JUNG , 等 . Estimation of Soil Surface Temperature by Heat Flux in Soil . Korean Journal of Soil Science & Fertilizer , 2004 . 37 ( 3 ): 131 - 135 . http://agris.fao.org/agris-search/search.do?recordID=KR2005011187 http://agris.fao.org/agris-search/search.do?recordID=KR2005011187 .
R MOAZENZADEH , B MOHAMMADI . Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature . Geoderma , 2019 . 353 ( 11 ): 152 - 171 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceb722825ed08acc1d27eb92703602e4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceb722825ed08acc1d27eb92703602e4 .
M DELBARI , S SHARIFAZARI , E MOHAMMADI . Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques . Theoretical and Applied Climatology , 2019 . 135 ( 3-4 ): 991 - 1001 . DOI: 10.1007/s00704-018-2370-3 http://doi.org/10.1007/s00704-018-2370-3 .
G LI , W LI , X TIAN , 等 . Short-term electricity load forecasting based on the xgboost algorithm . Smart Grid , 2017 . 7 ( 4 ): 274 - 285 . DOI: 10.12677/SG.2017.74031 http://doi.org/10.12677/SG.2017.74031 .
S JI , X WANG , W ZHAO , 等 . An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise . Mathematical Problems in Engineering , 2019 . 2019 ( Article ID 8503252 ): 1 - 15 . http://www.researchgate.net/publication/335848331_An_Application_of_a_Three-Stage_XGBoost-Based_Model_to_Sales_Forecasting_of_a_Cross-Border_E-Commerce_Enterprise http://www.researchgate.net/publication/335848331_An_Application_of_a_Three-Stage_XGBoost-Based_Model_to_Sales_Forecasting_of_a_Cross-Border_E-Commerce_Enterprise .
ALBERTOTORRES-BARRÁNA , Á ALONSO , J R DORRONSOROAB . Regression tree ensembles for wind energy and solar radiation prediction . Neurocomputing , 2017 . 326-327 ( 1 ): 151 - 160 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b6de8d43af563baf8ad511be7675871 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b6de8d43af563baf8ad511be7675871 .
J ZHANG , Y ZHU , X ZHANG , 等 . Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas . Journal of Hydrology , 2018 . 561 ( 6 ): 918 - 929 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a60bf98e262c2b27998a0c1375c1cd47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a60bf98e262c2b27998a0c1375c1cd47 .
X QING , Y NIU . Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM . Energy , 2018 . 148 ( 4 ): 461 - 468 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2d346ea1562178ac2662687a590107e http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2d346ea1562178ac2662687a590107e .
Q L LI , H B HAO , Y ZHAO , 等 . GANs-LSTM model for soil temperature estimation from meteorological:a new approach . IEEE ACCESS , 2020 . 8 59427 - 59443 . DOI: 10.1109/ACCESS.2020.2982996 http://doi.org/10.1109/ACCESS.2020.2982996 .
0
浏览量
225
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构