浏览全部资源
扫码关注微信
重庆理工大学 药学与生物工程学院, 重庆 400054
[ "王洪(1993-), 男, 重庆奉节人, 硕士, 2017年于重庆理工大学获得学士学位, 主要从事生物医学微系统、小型医学仪器方面的研究。E-mail:whongssrui@163.com" ]
崔建国(1974-), 男, 辽宁锦州人, 副教授, 博士, 硕士生导师, 1998年于辽宁石油化工大学获得学士学位, 2004年、2008年于重庆大学分别获得硕士、博士学位, 主要从事生物医学系统及智能医疗仪器方面的研究。E-mail:cjg998@hotmail.com CUI Jian-guo, E-mail:cjg998@hotmail.com
收稿日期:2020-06-01,
修回日期:2020-06-11,
录用日期:2020-6-11,
纸质出版日期:2020-11-25
移动端阅览
王洪, 郑杰, 闫延鹏, 等. 数字微流控芯片上液滴驱动[J]. 光学 精密工程, 2020,28(11):2488-2496.
Hong WANG, Jie ZHENG, Yan-peng YAN, et al. Drop driving on digital microfluidic chip[J]. Optics and precision engineering, 2020, 28(11): 2488-2496.
王洪, 郑杰, 闫延鹏, 等. 数字微流控芯片上液滴驱动[J]. 光学 精密工程, 2020,28(11):2488-2496. DOI: 10.37188/OPE.20202811.2488.
Hong WANG, Jie ZHENG, Yan-peng YAN, et al. Drop driving on digital microfluidic chip[J]. Optics and precision engineering, 2020, 28(11): 2488-2496. DOI: 10.37188/OPE.20202811.2488.
为提高数字微流控芯片上液滴驱动能力及效率,开展了数字微流控系统的设计及平台搭建研究,该系统包括上位机控制软件、下位机硬件系统和DMF芯片三部分。提出一种曲边四边形组合电极,该电极图形边缘能与液滴保持更大的重合度,可提供更大的初始驱动力。测试了芯片上空气浴和油浴中液滴的驱动控制,测得在空气浴中碳酸丙烯脂液滴的平均速度为25 μm/s,在油浴中碳酸丙烯脂液滴的平均速度为260 μm/s。实验结果表明,所设计的曲边四边形电极可有效增强液滴的驱动控制能力。
To improve the driving capability and efficiency of droplets on a digital microfluidic (DMF) chip
a DMF system was designed and platform building research was conducted. The system includes three parts: upper computer control software
a lower computer hardware system
and a DMF chip. A curved quadrilateral combined electrode is proposed. The edge of the electrode pattern can maintain a greater degree of coincidence with the droplet and can provide a greater initial driving force. Drive control of the droplets in air and oil baths on the chip was tested
and the average velocities of propylene carbonate droplets were measured to be 25 and 260 μm/s in air and oil baths
respectively. The experimental results demonstrate that the curved quadrilateral electrode designed in the study can effectively enhance drive control of the droplet.
林 炳承 , 秦 建华 . 图解微流控芯片实验室 , : 北京 科学出版社 , 2008 . 473 .
B CH LIN , J H QIN . Graphic Microfluidic Chip Laboratory , : Beijing Science Press , 2008 . 473 .
陈 九生 , 蒋 稼欢 . 微流控液滴技术:微液滴生成与操控 . 分析化学 , 2012 . 40 ( 8 ): 1293 - 1300 .
J SH CHEN , J H JIANG . Microfluidic droplet technology:microdroplet generation and manipulation . Chinese Journal of Analytical Chemistry , 2012 . 40 ( 8 ): 1293 - 1300 .
E SAMIEI , M TABRIZIAN , M HOORFAR . A review of digital microfluidics as portable platforms for lab-on a-chip applications . Lab on A Chip , 2016 . 16 ( 13 ): 2376 DOI: 10.1039/C6LC00387G http://doi.org/10.1039/C6LC00387G .
SAMMARCO TS, BURNS M A. Thermocapillary pumping of discrete drops in microfabricated analysis devices[J]. 1999, 45(2): 350-366.
K HAN , L HENG , Y ZHANG , 等 . Slippery surface based on photoelectric responsive nanoporous composites with optimal wettability region for droplets' multifunctional manipulation . Advanced Science , 2019 . 6 ( 1 ): 1801231 https://onlinelibrary.wiley.com/doi/10.1002/advs.201801231 https://onlinelibrary.wiley.com/doi/10.1002/advs.201801231 .
D JIANG , S Y PARK . Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method . Lab on a Chip , 2016 . 16 ( 10 ): 1831 - 1839 . DOI: 10.1039/C6LC00293E http://doi.org/10.1039/C6LC00293E .
K JUN . Nonlinear acoustic phenomena caused by surface acoustic wave and its application to digital microfluidic system . Japanese Journal of Applied Physics , 2018 . 57 ( 7S1 ): 07LA01 DOI: 10.7567/JJAP.57.07LA01 http://doi.org/10.7567/JJAP.57.07LA01 .
L W DONG , Y L HU , Y F HAN , 等 . A paper-based microfluidic device with surface acoustic wave integrated in a printed circuit board . Ferroelectrics , 2016 . 504 ( 1 ): 230 - 236 . DOI: 10.1080/00150193.2016.1242052 http://doi.org/10.1080/00150193.2016.1242052 .
Y ZHANG , N T NGUYEN . Magnetic digital microfluidics-a review . Lab on a Chip , 2017 . 17 ( 6 ): 994 - 1008 . DOI: 10.1039/C7LC00025A http://doi.org/10.1039/C7LC00025A .
T KOKALJ , E PÉREZ-RUIZ , J LAMMERTYN , 等 . Building bio-assays with magnetic particles on a digital microfluidic platform . New Biotechnology , 2015 . 32 ( 5 ): 485 - 503 . DOI: 10.1016/j.nbt.2015.03.007 http://doi.org/10.1016/j.nbt.2015.03.007 .
B COELHO , B VEIGAS , E FDRTONATO , 等 . Digital Microfluidics for Nucleic Acid Amplification . Sensors , 2017 . 17 ( 7 ): 1495 DOI: 10.3390/s17071495 http://doi.org/10.3390/s17071495 .
D G RACKUS , R P S DE CAMPOS , C CHAN , 等 . Pre-concentration by liquid intake by paper (P-CLIP):a new technique for large volumes and digital microfluidics . Lab Chip , 2017 . 17 ( 13 ): 2272 - 2280 . DOI: 10.1039/C7LC00440K http://doi.org/10.1039/C7LC00440K .
K CHOI , A H C NG , R FOBEL , 等 . Digital microfluidics . Annual Review of Analytical Chemistry , 2012 . 5 ( 1 ): 413 - 440 . DOI: 10.1146/annurev-anchem-062011-143028 http://doi.org/10.1146/annurev-anchem-062011-143028 .
R FOBEL , A E KIRBY , A H C NG , 等 . Paper microfluidics goes digital . Advanced Materials , 2014 . 26 ( 18 ): 2838 - 2843 . DOI: 10.1002/adma.201305168 http://doi.org/10.1002/adma.201305168 .
M ABDELGAWAD , A R WHEELER . The digital revolution:a new paradigm for microfluidics . Advanced Materials , 2009 . 21 ( 8 ): 920 - 925 . DOI: 10.1002/adma.200802244 http://doi.org/10.1002/adma.200802244 .
林 炳承 . 纳米科学与技术:微纳流控芯片实验室 , : 北京 科学出版社 , 2015 .
B CH LIN . Nanoscience and Technology:Micro-nano Fluidics Chip Laboratory , : Beijing Science Press , 2015 .
E CASTRO-HERNANDEZ , P GARCIA-SANCHEZ , S H TAN , 等 . Breakup length of AC electrified jets in a microfluidic flow-focusing junction . Microfluid and Nanofluid , 2015 . 19 ( 4 ): 787 - 794 . DOI: 10.1007/s10404-015-1603-3 http://doi.org/10.1007/s10404-015-1603-3 .
JIN C, XIONG X, PATRA P, et al .. Design and simulation of high-throughput microfluidic droplet dispenser for lab-on-a-chip applications[C]. Comsol Boston Conference , 2014.
许 晓威 , 陈 立国 , 贺 文元 , 等 . 数字微流控芯片半月形驱动电极的设计 . 光学 精密工程 , 2014 . 22 ( 3 ): 633 - 641 . http://ope.lightpublishing.cn/thesisDetails?columnId=2227786&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=2227786&Fpath=&index=-1&l=zh .
X W XU , L G CHEN , W Y HE , 等 . Design of crescent electrodes for digital electrowetting-on-dielectric devices . Opt. Precision Eng. , 2014 . 22 ( 3 ): 633 - 641 . http://ope.lightpublishing.cn/thesisDetails?columnId=2227786&Fpath=&index=-1&l=zh http://ope.lightpublishing.cn/thesisDetails?columnId=2227786&Fpath=&index=-1&l=zh .
M ABDELGAWAD , P PARK , A R WHEELER . Optimization of device geometry in single-plate digital microfluidics . Journal of Applied Physics , 2009 . 105 ( 9 ): 1072 - 1078 .
张 雅雅 , 崔 建国 . 基于数字光刻投影系统的快速微加工技术 . 应用光学 , 2015 . 36 ( 3 ): 448 - 453 . http://d.wanfangdata.com.cn/Periodical/yygx201503020 http://d.wanfangdata.com.cn/Periodical/yygx201503020 .
Y Y ZHANG , J G CUI . Rapid micromachining technology based on digital lithography projection system . Journal of Applied Optics , 2015 . 36 ( 3 ): 448 - 453 . http://d.wanfangdata.com.cn/Periodical/yygx201503020 http://d.wanfangdata.com.cn/Periodical/yygx201503020 .
吕红艳.基于介电效应的微液滴驱动研究[D].重庆: 重庆理工大学, 2019. http://cdmd.cnki.com.cn/Article/CDMD-11660-1019071259.htm
LÜ H Y. Research on Microdroplets Drive Based on Dielectric Effect [D]. Chongqing: Chongqing University of Technology, 2019. (in Chinese)
0
浏览量
1405
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构