浏览全部资源
扫码关注微信
1.安徽大学 电气工程与自动化学院,安徽 合肥230601
2.安徽大学 电子信息工程学院,安徽 合肥230601
3.信息材料与智能感知安徽省实验室,安徽 合肥 230601
4.中国科学技术大学 精密机械与精密仪器系,安徽 合肥 230022
[ "苏亚辉(1968-),男,安徽凤台人,博士,教授,硕士生导师,2007年于中国科学技术大学获得博士学位,主要研究方向有超快激光微纳米加工技术、计算全息技术、仿生界面设计及制备技术。E-mail:ustcsyh@ahu.edu.cn" ]
[ "秦天天(1995-),女,河北定州人,硕士研究生,2018年于邢台学院获得学士学位,主要从事飞秒激光微纳米加工的研究。E-mail:18803099106@163.com" ]
[ "吴 东(1983-),男,安徽枞阳人,博士,教授,博士生导师,2010年于吉林大学获得博士学位,主要研究方向有激光微纳加工、微纳米技术、先进精密制造、微芯片实验室和微光学器件。E-mail:dongwu@ustc.edu.cn" ]
收稿日期:2020-09-01,
修回日期:2020-09-28,
纸质出版日期:2020-12-15
移动端阅览
苏亚辉,秦天天,许兵等.飞秒激光双光子聚合方法加工图案化微透镜及其成像测试[J].光学精密工程,2020,28(12):2629-2635.
SU Ya-hui,QIN Tian-tian,XU Bing,et al.Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test[J].Optics and Precision Engineering,2020,28(12):2629-2635.
苏亚辉,秦天天,许兵等.飞秒激光双光子聚合方法加工图案化微透镜及其成像测试[J].光学精密工程,2020,28(12):2629-2635. DOI: 10.37188/OPE.20202812.2629.
SU Ya-hui,QIN Tian-tian,XU Bing,et al.Patterned microlens processed using two-photon polymerization of femtosecond laser and its imaging test[J].Optics and Precision Engineering,2020,28(12):2629-2635. DOI: 10.37188/OPE.20202812.2629.
为改善以往图案化透镜加工工艺复杂、制造技术昂贵、图案设计方面有限制等缺点,本文将飞秒激光双光子聚合加工技术应用于图案化微透镜的快速、高精度加工。通过球面波因子的变形设计了不同图案的微透镜,利用飞秒激光双光子聚合加工技术在光刻胶样品中加工出图案化的微透镜,然后将光刻胶样品置于显影液中去除未聚合部分,得到图案化微透镜,最后对图案化微透镜进行成像测试和光强均一化分析。将LED光源分别置于不同图案微透镜的下方,光线透过图案化微透镜成功聚焦出光强一致的焦点图案。实验结果表明,使用飞秒激光双光子聚合加工可以实现灵活可控的3D图案化微透镜结构的加工,采用加工功率为7 mW,曝光时间为2 ms,扫描
xy
步距为0.5 μm,
z
步距为0.8~1.5 μm,不仅保证了微透镜结构表面光滑,而且实现了微透镜的快速加工。该技术在加工光学超材料、光学微器件、集成光学器件等方面具有广阔的应用前景。
Two-photon polymerization technology for use in a femtosecond laser was used in the rapid and high-precision processing of a patterned microlens to improve the previous shortcomings, including a complex processing technology, expensive manufacturing technology, and limited pattern design. First, three-dimensional software was used to design the microlens pattern through the deformation of the spherical wave factor, and the two-photon polymerization processing technology for a femtosecond laser was used to process the patterned microlens in the photoresist sample. The sample was then placed in a developer to remove the unprocessed area and obtain the corresponding patterned microlens. Finally, an imaging test and a light intensity homogenization analysis of the patterned microlens were carried out. An LED light source was placed below the patterned microlens, and the light was successfully focused through the patterned microlens to obtain the corresponding patterns with the same light intensity. The experiment shows that the two-photon polymerization of a femtosecond laser can realize the flexible and controllable processing of a 3D microlens structure, a processing power of 7 mW, an exposure time of 2 ms, a scanning xy-step of 0.5 μm, and a z-step of 0.8-1.5 μm, ensuring the smooth surface of the microlens structure and realizing a rapid microlens processing. The two-photon polymerization technology for a femtosecond laser will play an important role in the processing field such as optical metamaterials, optical microdevices, and integrated optical devices.
LIN K B , SHEN T W , SU Y H . Emergent upconversion sustainable micro-optical trapping device [J]. Particle & Particle; Particle Systems Characterization , 2019 , 36 ( 7 ): 1900077 .
ZHANG T Y , LI P , YU H B , et al . .Fabrication of flexible microlens arrays for parallel super-resolution imaging [J]. Applied Surface Science , 2020 , 504 : 144375 .
张一 , 余卿 , 张昆 , 等 . 基于数字微镜器件的并行彩色共聚焦测量系统 [J]. 光学 精密工程 , 2020 , 28 ( 4 ): 859 - 866 .
ZHANG Y , YU Q , ZHANG K , et al . . Parallel color confocal measurement system based on digital micromirror device [J]. Optics and Precision Engineering , 2020 , 28 ( 4 ): 859 - 866 . (in Chinese)
YANG B , ZHOU J Y , CHEN Q M , et al . . Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation .[J]. Optics Express , 2018 , 26 ( 22 ): 28927 .
ZHAO W X , WANG Q H , WANG A H , et al . . Autostereoscopic display based on two-layer lenticular lenses [J]. Optics Letters , 2010 , 35 ( 24 ): 4127 - 4129 .
SCHONBRUN E , STEINVURZEL P E , CROZIER K B . A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array [J]. Optics Express , 2011 , 19 ( 2 ): 1385 - 1394 .
HU J Y , LIN C P , HUANG S Y , et al . . Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency [J]. Sens. Act. A Phys. , 2008 , 147 ( 1 ): 93 - 98 .
XU J J , YAO W G , TIAN Z N , et al . .High curvature concave-convex microlens [J] . IEEE Photonics Technology Letters , 2015 , 27 ( 23 ): 2465 - 2468 .
CADARSO V J , PERERA-NúÑEZ J , JACOTDESCOMBES L , et al . . Microlenses with defined contour shapes [J]. Optics Express , 2011 , 19 ( 19 ): 18665 - 18670 .
胡绪瑞 , 陈达 , 王刚 . 等 .利用双光子聚合在非透明基底上制备微结构 [J]. 宁波大学学报:理工版 , 2019 , 32 ( 5 ): 85 - 90 .
HU X R , CHEN D , WANG G , et al . . Fabrication of microstructures on non-transparent substrates by two-photon polymerization [J]. Journal of Ningbo University: Nature Science & Engineering Edition , 2019 , 32 ( 5 ): 85 - 90 . (in Chinese)
潘传鹏 , 周明 , 刘立鹏 , 等 . 双光子微加工技术与应用研究 [J]. 纳米技术与精密工程 , 2004 , 2 ( 4 ): 278 - 283 .
PAN CH P , ZHOU M , LIU L P , et al . . Research on two-photon microfabrication technology and its application [J]. Nanotechnology and Precision Engineering , 2004 , 2 ( 4 ): 278 - 283 . (in Chinese)
WU D , WU S Z , NIU L G , et al . . High numerical aperture microlens arrays of close packing [J]. Applied Physics Letters , 2010 , 97 ( 3 ): 031109 .
WU D , CHEN Q D , NIU L G , et al . . 100% fill-factor Aspheric Microlens Arrays (AMLA) with sub-20-nm precision [J]. IEEE Photonics Technology Letters , 2009 , 21 ( 20 ): 1535 - 1537 .
WU D , NIU L G , CHEN Q D , et al . . High efficiency multilevel phase-type fractal zone plates [J]. Optics Letters , 2008 , 33 ( 24 ): 2913 - 2915 .
杨亮 . 基于空间光调制器的飞秒激光并行加工技术的研究 [D]. 合肥 : 中国科学技术大学 , 2015 .
YANG L . Research on Parallel Femtosecond Laser Processing Technologies with Spatial Light Modulator [D]. Hefei : University of Science and Technology of China , 2015 . (in Chinese)
苏亚辉 , 汪金礼 , 杨亮 , 等 . 飞秒激光全息并行加工中的多焦点均一性 [J]. 光学 精密工程 , 2013 , 21 ( 8 ): 1936 - 1941 .
SU Y H , WANG J L , YANG L , et al . .Multifocal uniformity in femtosecond laser holographic parallel processing [J]. Optics and Precision Engineering , 2013 , 21 ( 8 ): 1936 - 1941 . (in Chinese)
ZHANG Z Y , ZHANG C C , HU Y L , et al . .Highly uniform parallel microfabrication using a large numerical aperture system [J]. Applied Physics Letters , 2016 , 109 ( 2 ): 021109 .
袁宏伟 , 饶生龙 , 吴东 , 等 . 基于飞秒激光的可运动微结构加工与旋转驱动 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 584 - 590 .
YUAN H W , RAO SH L , WU D , et al . . Moveable microstructure machining and rotating drive based on femtosecond laser [J]. Optics and Precision Engineering , 2020 , 28 ( 3 ): 584 - 590 . (in Chinese)
李金健 , 刘一 , 曲士良 . 飞秒激光微纳加工光纤功能器件研究进展 [J]. 激光与光电子学进展 , 2020 , 57 ( 11 ): 1 - 27 .
LI J J , LIU Y , QU SH L . Research progress on fiber functional devices fabricated by femtosecond laser micro-nano processing [J]. Laser & Optoelectronics Progress , 2020 , 57 ( 11 ): 1 - 27 . (in Chinese)
史杨 , 许兵 , 吴东 , 等 . 飞秒激光直写技术制备功能化微流控芯片研究进展 [J]. 中国激光 , 2019 , 46 ( 10 ): 9 - 28 .
SHI Y , XU B , WU D , et al . . Research progress on the preparation of functional microfluidic chips using femtosecond laser direct writing technology [J]. Chinese Journal of Lasers , 2019 , 46 ( 10 ): 9 - 28 . (in Chinese)
马卓晨 , 张永来 , 孙洪波 . 飞秒激光“双三维”纳米加工制备智能微纳器件 [J]. 科学通报 , 2020 ( 8 ): 1 - 2 .
MA ZH CH , ZHANG Y L , SUN H B . Fabrication of intelligent micro-nano devices by femtosecond laser "double 3d" nanometer [J]. Science Bulletin , 2020 ( 8 ): 1 - 2 . (in Chinese)
张佳茹 , 管迎春 . 超快激光制备生物医用材料表面功能微结构的现状及研究进展 [J]. 中国光学 , 2019 , 12 ( 2 ): 199 - 213 .
ZHANG J R , GUAN Y CH . Current situation and research progress of surface functional microstructure of biomedical materials prepared by ultrafast laser: a review [J]. Chinese Journal of Optics , 2019 , 12 ( 2 ): 199 - 213 . (in Chinese)
0
浏览量
940
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构