浏览全部资源
扫码关注微信
1.上海大学 通信与信息工程学院,上海 200444
2.中国科学院 苏州生物医学工程技术研究所 中国科学院生物医学检验技术重点实验室,江苏 苏州 215163
3.中国科学技术大学,安徽 合肥 230026
[ "李树力(1994-),男,安徽马鞍山人,硕士研究生,2016年于天津大学获得学士学位,主要从事图像处理方向的研究。E-mail:hktk94@shu.edu.cn" ]
[ "周连群(1981-),男,山东金乡人,研究员,博士生导师,2010年于法国Université de Franche-Comté大学和中科院研究生院获得博士学位,主要研究方向为微纳生物传感器及系统。E-mail:zhoulq@sibet.ac.cn" ]
[ "张芷齐(1987-),男,吉林辽源人,硕士研究生,助理研究员, 2011 年于清华大学获得学士学位,2016 年于中国科学院大学获得硕士学位,主要从事数据处理算法设计与系统软件开发方面的研究。 E-mail:zhangzhiqi@sibet.ac.cn" ]
收稿日期:2020-05-07,
修回日期:2020-07-02,
纸质出版日期:2020-12-15
移动端阅览
李树力,李金泽,郭振等.蜂窝状数字PCR微阵列荧光图像的信息提取[J].光学精密工程,2020,28(12):2745-2755.
LI Shu-li,LI Jin-ze,GUO Zhen,et al.Extraction of fluorescent image information from cellular digital PCR microarray[J].Optics and Precision Engineering,2020,28(12):2745-2755.
李树力,李金泽,郭振等.蜂窝状数字PCR微阵列荧光图像的信息提取[J].光学精密工程,2020,28(12):2745-2755. DOI: 10.37188/OPE.20202812.2745.
LI Shu-li,LI Jin-ze,GUO Zhen,et al.Extraction of fluorescent image information from cellular digital PCR microarray[J].Optics and Precision Engineering,2020,28(12):2745-2755. DOI: 10.37188/OPE.20202812.2745.
蜂窝状堆叠数字PCR微阵列图像因其单元尺寸小、排列密集,荧光信号弱、易受光照分布影响,其样点定位困难。本文提出基于形态学的三通道蜂窝状荧光图像样点寻址算法及数字PCR图像信息提取方法,可快速、有效识别微阵列芯片生物分子微弱荧光信息。针对不同通道的图像进行配准融合,使样点排布整齐;通过增强图像的对比度,选取有效样点区域,基于改进伽马算法去除光照分布不均效应;基于形态学算法识别紧密排列的样点,对微阵列芯片图像进行单元分割定位,提取每个样点的生物分子荧光信息。该方法处理一块约20 000个微单元的数字PCR芯片图像的耗时小于20 s,与现有定位方法相比,处理相同数量样点的图片的耗时可减少3个数量级;通过与标准仪器结果相比,样点识别精度达到98.79%,生物信息计算结果(拷贝数)准确度达到96.2%。本文提出基于形态学的三通道蜂窝状荧光图像样点寻址算法及数字PCR图像信息提取方法克服了蜂窝状堆叠式微阵列荧光图像样点难以定位的问题,与现有方法相比,能够快速、准确地获取生物信息,为数字PCR技术的精准定量奠定了基础。
Due to its small unit size, dense array, weak fluorescence signal, and vulnerability to light distribution, it is difficult to locate the sample points of honeycomb stacked digital PCR microarray images. In this paper, an algorithm of three-channel honeycomb fluorescence spots addressing based on morphology, and a digital PCR image information extraction method are proposed, which can quickly and effectively identify the weak fluorescence information of biomolecules in microarray chips. The image registration fusion is carried out for different channels to make the sample points orderly. Select effective spots area by enhancing the contrast of the image. Use improved gamma algorithm to remove uneven distribution of illumination. Identify, locate and segment the closely arranged spots on the microarray chip based on morphological algorithm, and then, extract the fluorescence information of biomolecules of each spot. Using this method, the image processing time of a digital PCR chip with about 20 000 microcells is less than 20 s. Compared with the existing spot addressing methods, the processing time of the same number of samples can be reduced by three orders of magnitude. Compared with the results of standard instruments, the accuracy of sample recognition is 98.79%, and the accuracy of biological information calculation (copy number) is 96.2%. In this paper, the three-way honeycomb fluorescence spot addressing algorithm and digital PCR image information extraction method based on morphology are proposed to overcome the difficulty of locating the spots in the honeycomb stacked microarray fluorescence picture. Compared with the existing methods, biological information can be obtained quickly and accurately, which lays a foundation for precise quantification of digital PCR technology.
BASU A S . Digital assays part I: partitioning statistics and digital PCR [J]. SLAS Technology , 2017 , 22 ( 4 ): 369 - 386 .
SREEJITH K R , OOI C H , JIN J , et al . . Digital polymerase chain reaction technology-recent advances and future perspectives [J]. Lab on a Chip , 2018 , 18 ( 24 ): 3717 - 3732 .
VOGELSTEIN B , KINZLER K W . Digital PCR [J]. Proceedings of the National Academy of Sciences of the United States of America , 1999 , 96 ( 16 ): 9236 - 9241 .
MAJUMDAR N , BANERJEE S , PALLAS M , et al . . Poisson plus quantification for digital PCR systems [J]. Scientific Reports , 2017 , 7 : 9617 .
刘聪 , 董文飞 , 张涛 , 等 . 微滴式数字PCR中低浓度荧光微滴分类 [J]. 光学 精密工程 , 2018 , 26 ( 3 ): 647 - 653 .
LIU C , DONG W F , ZHANG T , et al . . Identification of florescent droplets at low concentrations for droplet digital PCR [J]. Optics and Precision Engineering , 2018 , 26 ( 3 ): 647 - 653 . (in Chinese)
孔慧 , 李传宇 , 周连群 , 等 . 薄膜谐振Lamb波传感器测量液体流速矢量的方法 [J]. 光学 精密工程 , 2017 , 25 ( 1 ): 155 - 162 .
KONG H , LI CH Y , ZHOU L Q , et al . . A method for fluid velocity vector measurement using thin film Lamb wave resonator [J]. Optics and Precision Engineering , 2017 , 25 ( 1 ): 155 - 162 . (in Chinese)
LI H N , ZHANG H Q , XU Y , et al . . Versatile digital polymerase chain reaction chip design, fabrication, and image processing [J]. Sensors and Actuators B: Chemical , 2019 , 283 : 677 - 684 .
FOUAD , ISLAM , et al . . Automatic and accurate segmentation of gridded cDNA microarray images using different [J]. Advances in Computing , 2014 , 4 ( 2 ): 41 - 54 .
WANG Z Y , HUANG X Q , CHENG Z Q . Automatic spot identification method for high throughput surface plasmon resonance imaging analysis [J]. Biosensors , 2018 , 8 ( 3 ): 85 .
SHAO G F , LI D Y , ZHANG J F , et al . . Automatic microarray image segmentation with clustering-based algorithms [J]. PLoS One , 2019 , 14 ( 1 ): e0210075 .
SAEID M M , NOSSAIR Z B , SALEH M A . A fully automated spot detection approach for cDNA microarray images using adaptive thresholds and multi-resolution analysis [J]. IEEE Access , 2019 , 7 : 80380 - 80389 .
NGUYEN H N , PAVEAU V , CAUCHOIS C , et al . . ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying [J]. BMC Bioinformatics , 2018 , 19 ( 1 ): 148 .
LI T J , SHAO G F , SUN Y , et al . . Contrast enhancement for cDNA microarray image based on fourth-order moment [J]. Signal , Image and Video Processing , 2018 , 12 ( 6 ): 1069 - 1077 .
BELEAN B , TEREBES R , BOT A . Low-complexity PDE-based approach for automatic microarray image processing [J]. Medical & Biological Engineering & Computing , 2015 , 53 ( 2 ): 99 - 110 .
周淑芳 , 苟彤 , 方伟波 , 等 . 基于微流控芯片的数字PCR荧光图像分析方法 [J]. 生命科学仪器 , 2018 , 16 ( 1 ): 27 - 31 .
ZHOU SH F , GOU T , FANG W B , et al . . Digital PCR fluorescence image processing based on microfluidic chip [J]. Life Science Instruments , 2018 , 16 ( 1 ): 27 - 31 . (in Chinese)
GIANNAKEAS N , KALATZIS F , TSIPOURAS M G , et al . . Spot addressing for microarray images structured in hexagonal grids [J]. Computer Methods and Programs in Biomedicine , 2012 , 106 ( 1 ): 1 - 13 .
BAJCSY P . An overview of DNA microarray grid alignment and foreground separation approaches [J]. EURASIP Journal on Advances in Signal Processing , 2006 , 2006 : 080163 .
BALL C A , AWAD I A B , DEMETER J , et al . . The stanford microarray database accommodates additional microarray platforms and data formats [J]. Nucleic Acids Research , 2005 , 33 : D580 - D582 .
GIANNAKEAS N , KALATZIS F , TSIPOURAS M G , et al . . A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid [J]. Signal , Image and Video Processing , 2016 , 10 ( 4 ): 719 - 728 .
GIANNAKEAS N , FOTIADIS D I . An automated method for gridding and clustering-based segmentation of cDNA microarray images [J]. Computerized Medical Imaging and Graphics , 2009 , 33 ( 1 ): 40 - 49 .
GALINSKY V L . Automatic registration of microarray images. II. Hexagonal grid [J]. Bioinformatics , 2003 , 19 ( 14 ): 1832 - 1836 .
GALINSKY V L . Automatic registration of microarray images. I. Rectangular grid [J]. Bioinformatics , 2003 , 19 ( 14 ): 1824 - 1831 .
SABERKARI H , SHAMSI M , GHAVIFEKR H B . A shape-independent algorithm for fully-automated gridding of cDNA microarray images [J]. Computers & Electrical Engineering , 2017 , 62 : 135 - 150 .
KAUR A , SINGH C . Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization [J]. Applied Soft Computing , 2017 , 51 : 180 - 191 .
邱亚军 , 李金泽 , 李传宇 , 等 . 高通量数字化毛细管微阵列芯片 [J]. 光学 精密工程 , 2019 , 27 ( 6 ): 1237 - 1244 .
QIU Y J , LI J Z , LI CH Y , et al . . High-throughput digital capillary microarray [J]. Optics and Precision Engineering , 2019 , 27 ( 6 ): 1237 - 1244 . (in Chinese)
MAES F , COLLIGNON A , VANDERMEULEN D , et al . . Multimodality image registration by maximization of mutual information [J]. IEEE Transactions on Medical Imaging , 1997 , 16 ( 2 ): 187 - 198 .
LUNDHOLT B K , SCUDDER K M , PAGLIARO L . A simple technique for reducing edge effect in cell-based assays [J]. Journal of Biomolecular Screening , 2003 , 8 ( 5 ): 566 - 570 .
BAI X Z , ZHOU F G , JIN T . Enhancement of dim small target through modified top-hat transformation under the condition of heavy clutter [J]. Signal Processing , 2010 , 90 ( 5 ): 1643 - 1654 .
0
浏览量
520
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构