浏览全部资源
扫码关注微信
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "杨 燕(1972-),河南临颍人,博士,教授,硕士生导师,1995年于兰州铁道学院获得学士学位,2006年于兰州交通大学获得硕士学位,2010年于兰州大学获得博士学位,主要从事数字图像处理,智能信息处理及语音信号处理方面的研究。E-mail: yangyantd@mail.lzjtu.cn" ]
[ "梁小珍(1996-),女,甘肃天水人,硕士研究生,2019年于兰州交通大学获得学士学位,主要从事计算机视觉、数字图像处理方面的研究。E-mail:2907391053@qq.com" ]
收稿日期:2021-01-03,
修回日期:2021-03-07,
纸质出版日期:2021-08-15
移动端阅览
杨燕,梁小珍,张金龙.分离特征和协同网络下的端到端图像去雾[J].光学精密工程,2021,29(08):1931-1941.
YANG Yan,LIANG Xiao-zhen,ZHANG Jin-long.End-to-end image dehazing under separated features and collaborative network[J].Optics and Precision Engineering,2021,29(08):1931-1941.
杨燕,梁小珍,张金龙.分离特征和协同网络下的端到端图像去雾[J].光学精密工程,2021,29(08):1931-1941. DOI: 10.37188/OPE.2021.0003.
YANG Yan,LIANG Xiao-zhen,ZHANG Jin-long.End-to-end image dehazing under separated features and collaborative network[J].Optics and Precision Engineering,2021,29(08):1931-1941. DOI: 10.37188/OPE.2021.0003.
针对去雾领域中传统方法受手动设置特征的限制,以及现有网络去雾不彻底和细节保持不佳等问题,提出一种分离特征和协同网络下的端到端图像去雾模型。首先对传统的大气散射模型进行变形,分离出乘性特征和加性特征。其次,根据两个特征对最终去雾结果的影响程度,设计基于乘性特征和加性特征提取框架并行驱动的去雾网络。其中,乘性特征提取网络充分考虑了不同深度的空间信息及细节特征,通过各层之间密集级联达到特征重用和信息补偿的目的,以获取精密丰富的目标特征。另外,利用残差跨连结构搭建加性特征提取网络,用于训练偏置加性特征。最后,将分离特征代入复原模型得到无雾图像。实验表明:所提网络去雾效果显著,复原图像颜色自然,细节保持良好且各项指标占优。
Hand-designed features limit the performance of traditional dehazing methods, and existing networks encounter problems such as incomplete dehazing and significant loss of detail. Therefore, a model of end-to-end dehazing with separated features and a collaborative network is proposed herein. First, the traditional atmospheric scattering model is transformed to separate the multiplicative and additive features. Second, according to the influence of two features on the final dehazing result, a parallelly driven dehazing architecture is designed based on multiplicative and additive feature extraction frameworks. Further, spatial information and detailed features of different depths are fully considered in the multiplicative feature extraction network, and feature reuse and information compensation are realized using dense cascading to obtain precise and rich target features. Additionally, an additive feature extraction network is built to acquire biased and additive features according to the residual cross-connection structure. Finally, separated features are substituted into the restoration model to obtain a haze-free image. Experiment results show that the proposed network offers a significant dehazing effect, natural colors of restored images, outstanding detail retention, and superior scores of various metrics.
陈清江 , 张雪 . 混合残差学习与导向滤波算法在图像去雾中的应用 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2702 - 2712 .
CHEN Q J , ZHANG X . Application of hybrid residual learning and guided filtering algorithm in image defogging [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2702 - 2712 . (in Chinese)
杨燕 , 刘珑珑 , 张得欣 , 等 . 结合自适应雾气估计的快速单幅图像去雾 [J]. 光学 精密工程 , 2019 , 27 ( 10 ): 2263 - 2271 .
YANG Y , LIU L L , ZHANG D X , et al . Fast single image dehazing combined with adaptive haze estimation [J]. Opt. Precision Eng. , 2019 , 27 ( 10 ): 2263 - 2271 . (in Chinese)
WANG W , YUAN X , WU X , et al . Fast image dehazing method based on linear transformation [J]. IEEE Transactions on Multimedia , 2017 , 19 ( 6 ): 1142 - 1155 .
HE K , SUN J , TANG X . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 .
ZHU Q , MAI J , SHAO L . A fast single image haze removal algorithm using color attenuation prior [J]. IEEE Transactions on Image Processing , 2015 , 24 ( 11 ): 3522 - 3533 .
HU H M , ZHANG H D , ZHAO Z C , et al . Adaptive single image dehazing using joint local-global illumination adjustment [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 6 ): 1485 - 1495 .
YANG Y , WANG Z W . Haze removal: push DCP at the edge [J]. IEEE Signal Processing Letters , 2020 , 27 : 1405 - 1409 .
BOLUN CAI , XIANGMIN XU , KUI JIA , et al . DehazeNet: an end-to-end system for single image haze removal [J]. IEEE Transactions on Image Processing , 2016 , 25 ( 11 ): 5187 - 5198 .
REN W Q , MA L , ZHANG J W , et al . Gated fusion network for single image dehazing [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18 - 23 , 2018 . Salt Lake City, UT. IEEE , 2018 : 3253 – 3261 ..
LI B Y , PENG X L , WANG Z Y , et al . AOD-net: all-in-one dehazing network [C]. 2017 IEEE International Conference on Computer Vision (ICCV). October 22 - 29 , 2017 . Venice. IEEE , 2017 : 4780 - 4788 .
QIN X , WANG Z L , BAI Y C , et al . FFA-net: feature fusion attention network for single image dehazing [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 11908 - 11915 .
WANG A N , WANG W H , LIU J L , et al . AIPNet: image-to-image single image dehazing with atmospheric illumination prior [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 1 ): 381 - 393 .
刘海波 , 杨杰 , 吴正平 , 等 . 基于暗通道先验和Retinex理论的快速单幅图像去雾方法 [J]. 自动化学报 , 2015 , 41 ( 7 ): 1264 - 1273 .
LIU H B , YANG J , WU ZH P , et al . A fast single image dehazing method based on dark channel prior and retinex theory [J]. Acta Automatica Sinica , 2015 , 41 ( 7 ): 1264 - 1273 . (in Chinese)
LI R D , PAN J S , HE M , et al . Task-oriented network for image dehazing [J]. IEEE Transactions on Image Processing , 2020 , 29 : 6523 - 6534 .
MENG G F , WANG Y , DUAN J Y , et al . Efficient image dehazing with boundary constraint and contextual regularization [C]. 2013 IEEE International Conference on Computer Vision . 18,2013 , Sydney , NSW , Australia . IEEE , 2013 : 617 - 624 .
LIU R S , FAN X , HOU M J , et al . Learning aggregated transmission propagation networks for haze removal and beyond [J]. IEEE Transactions on Neural Networks and Learning Systems , 2019 , 30 ( 10 ): 2973 - 2986 .
REN W Q , LIU S , ZHANG H , et al . Single image dehazing via multi-scale convolutional neural networks [M]. Computer Vision-ECCV 2016. Cham : Springer International Publishing , 2016 : 154 - 169 .
LI C Y , GUO C L , GUO J C , et al . PDR-net: perception-inspired single image dehazing network with refinement [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 3 ): 704 - 716 .
LI H C , XIONG P F , FAN H Q , et al . DFANet: deep feature aggregation for real-time semantic segmentation [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . 1520,2019 , Long Beach, CA, USA . IEEE , 2019 : 9514 - 9523 .
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [J]. 3rd International Conference on Learning Representations , ICLR 2015-Conference Track Proceedings, 2015 .
LI B Y , REN W Q , FU D P , et al . Benchmarking single-image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 1 ): 492 - 505 .
SILBERMAN N , HOIEM D , KOHLI P , et al . Indoor segmentation and support inference from RGBD images [M]. Computer Vision-ECCV 2012. Berlin, Heidelberg : Springer Berlin Heidelberg , 2012 : 746 - 760 .
张峥 , 李奇 , 徐之海 , 等 . 结合颜色线和暗通道的遥感图像去雾 [J]. 光学 精密工程 , 2019 , 27 ( 1 ): 181 - 190 .
ZHANG ZH , LI Q , XU ZH H , et al . Color-line and dark channel based dehazing for remote sensing images [J]. Opt. Precision Eng. , 2019 , 27 ( 1 ): 181 - 190 . (in Chinese)
0
浏览量
596
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构