浏览全部资源
扫码关注微信
1.中国科学技术大学,安徽 合肥 230026
2.中国科学院 苏州生物医学工程技术研究所 中国科学院生物医学检验技术重点实验室,江苏 苏州 215163
3.复旦大学,上海 200433
4.苏州国科芯感医疗科技有限公司,江苏 苏州 215163
5.季华实验室,广东 佛山 528200
[ "俞鹏飞(1994-),男,安徽滁州人,硕士研究生,2016年于大连理工大学获得学士学位,主要从事微机电系统与微纳加工工艺方面的研究。E-mail:ypf@mail.ustc.edu.cn" ]
[ "周连群(1981-),男,山东金乡人,博士,研究员,博士生导师,主要从事生物医学传感器和仪器的开发工作。E-mail:zhoulq@sibet.ac.cn" ]
收稿日期:2021-03-18,
修回日期:2021-04-23,
纸质出版日期:2022-01-15
移动端阅览
俞鹏飞,付博文,李传宇等.倏逝场照明的集成零模波导纳米孔芯片[J].光学精密工程,2022,30(01):62-70.
YU Pengfei,FU Bowen,LI Chuanyu,et al.Integrated zero-mode waveguide nanopore chip illuminated by evanescent field[J].Optics and Precision Engineering,2022,30(01):62-70.
俞鹏飞,付博文,李传宇等.倏逝场照明的集成零模波导纳米孔芯片[J].光学精密工程,2022,30(01):62-70. DOI: 10.37188/OPE.2021.0138.
YU Pengfei,FU Bowen,LI Chuanyu,et al.Integrated zero-mode waveguide nanopore chip illuminated by evanescent field[J].Optics and Precision Engineering,2022,30(01):62-70. DOI: 10.37188/OPE.2021.0138.
为了降低零模波导照明系统的成本、缩小尺寸,设计并完成衍射光栅、光波导以及零模波导的片上集成,并对集成化芯片的微纳结构及性能进行验证。采用时域有限差分法对集成化芯片进行了仿真设计,基于微纳加工手段制备出片上衍射光栅、光波导以及零模波导阵列结构,对微观结构进行表征,并借助荧光微球对芯片的性能进行验证。通过荧光微球测试,制备的集成化芯片可以实现荧光微球的有效激发;通过微观结构表征,衍射光栅周期为(352.8±2.6) nm,齿宽为(155.3±2.4) nm,刻蚀深度为(67.8±3.5) nm;光波导芯层的宽度为(504.05±10.35) nm,高度为(184.9±8.9) nm;零模波导直径为(200.2±6.4) nm,深度为(301.3±7.6) nm,满足设计要求。芯片尺寸为22 mm×22 mm,最小线宽为155 nm,通过8个衍射光栅、约1 000条光波导以及数十万个零模波导阵列结构的片上集成,为零模波导的照明提供了一种紧凑且有效的解决方案。
To reduce the cost and size of zero-mode waveguide lighting systems, the on-chip integration of diffraction gratings, optical waveguides, and zero-mode waveguides was designed and completed, and the micro-nanostructure and performance of the integrated chip were verified. The FDTD method was used to simulate and design the integrated chip. The on-chip diffraction grating, optical waveguide, and zero-mode waveguide array were fabricated by micro-nano machining methods, and the micro-nanostructure was characterized. A fluorescent microsphere test was performed to verify the performance of the chip. The test shows that the prepared integrated chip can realize the effective excitation of the fluorescent microsphere. The micro-nanostructure characterization shows that the diffraction grating period, tooth width, and etching depth are (352.8±2.6) nm, (155.3±2.4) nm, and (67.8±3.5) nm, respectively. The width and height of the waveguide core layer are (504.05±10.35) nm and (184.9±8.9) nm, respectively. The diameter and depth of the zero-mode waveguide are (200.2±6.4) nm and (301.3±7.6) nm, respectively, which meet the design requirements. The 22 mm× 22 mm chip, with a minimum linewidth of 155 nm, provides a compact and efficient solution for zero-mode waveguide illumination through the on-chip integration of eight diffraction gratings, approximately 1 000 optical waveguides, and hundreds of thousands of zero-mode waveguide array structures.
LEVENE M J , KORLACH J , TURNER S W , et al . Zero-mode waveguides for single-molecule analysis at high concentrations [J]. Science , 2003 , 299 ( 5607 ): 682 - 686 . doi: 10.1126/science.1079700 http://dx.doi.org/10.1126/science.1079700
MIYAKE T , TANII T , SONOBE H , et al . Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of Protein-Protein interaction [J]. Analytical Chemistry , 2008 , 80 ( 15 ): 6018 - 6022 . doi: 10.1021/ac800726g http://dx.doi.org/10.1021/ac800726g
ARDUI S , AMEUR A , VERMEESCH J R , et al . Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics [J]. Nucleic Acids Research , 2018 , 46 ( 5 ): 2159 - 2168 . doi: 10.1093/nar/gky066 http://dx.doi.org/10.1093/nar/gky066
KIM S H . TIRF-based single-molecule detection of the RecA presynaptic filament dynamics [J]. Methods in Enzymology , 2018 , 600 : 233 - 253 . doi: 10.1016/bs.mie.2017.11.012 http://dx.doi.org/10.1016/bs.mie.2017.11.012
AKKILIC N , GESCHWINDNER S , HÖÖK F . Single-molecule biosensors: Recent advances and applications [J]. Biosensors and Bioelectronics , 2020 , 151 : 111944 . doi: 10.1016/j.bios.2019.111944 http://dx.doi.org/10.1016/j.bios.2019.111944
TAYLOR A B , ZIJLSTRA P . Single-molecule plasmon sensing: current status and future prospects [J]. ACS Sensors , 2017 , 2 ( 8 ): 1103 - 1122 . doi: 10.1021/acssensors.7b00382 http://dx.doi.org/10.1021/acssensors.7b00382
PATRA S , BAIBAKOV M , CLAUDE J B , et al . Surface passivation of zero-mode waveguide nanostructures: benchmarking protocols and fluorescent labels [J]. Scientific Reports , 2020 , 10 ( 1 ): 5235 . doi: 10.1038/s41598-020-61856-9 http://dx.doi.org/10.1038/s41598-020-61856-9
LARKIN J , HENLEY R Y , JADHAV V , et al . Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing [J]. Nature Nanotechnology , 2017 , 12 ( 12 ): 1169 - 1175 . doi: 10.1038/nnano.2017.176 http://dx.doi.org/10.1038/nnano.2017.176
BARULIN A , CLAUDE J B , PATRA S , et al . Deep ultraviolet plasmonic enhancement of single protein autofluorescence in zero-mode waveguides [J]. Nano Letters , 2019 , 19 ( 10 ): 7434 - 7442 . doi: 10.1021/acs.nanolett.9b03137 http://dx.doi.org/10.1021/acs.nanolett.9b03137
MASUD AAL , MARTIN W E , MOONSCHI F H , et al . Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement [J]. Nanoscale Advances , 2020 , 2 ( 5 ): 1894 - 1903 . doi: 10.1039/c9na00641a http://dx.doi.org/10.1039/c9na00641a
KURMOO Y , HOOK A L , HARVEY D , et al . Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections [J]. Biomaterials Science , 2020 , 8 ( 5 ): 1464 - 1477 . doi: 10.1039/C9BM00875F http://dx.doi.org/10.1039/C9BM00875F
ZAMBRANA-PUYALTO X , PONZELLINI P , MACCAFERRI N , et al . A hybrid metal-dielectric zero mode waveguide for enhanced single molecule detection [J]. Chemical Communications (Cambridge, England) , 2019 , 55 ( 65 ): 9725 - 9728 . doi: 10.1039/c9cc04118d http://dx.doi.org/10.1039/c9cc04118d
ZHAO Y , CHEN D , YUE H , et al . Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions [J]. Nano Letters , 2014 , 14 ( 4 ): 1952 - 1960 . doi: 10.1021/nl404802f http://dx.doi.org/10.1021/nl404802f
BESSMELTSEV V P , ZAVYALOV P S , KOROLKOV V P , et al . Diffractive focusing fan-out element for the parallel DNA sequencer [J]. Optoelectronics, Instrumentation and Data Processing , 2017 , 53 ( 5 ): 457 - 465 . doi: 10.3103/s8756699017050053 http://dx.doi.org/10.3103/s8756699017050053
刘全 , 黄爽爽 , 鲁金超 , 等 . 用于飞秒激光制备光纤光栅的相位掩模研制 [J]. 光学 精密工程 , 2020 , 28 ( 4 ): 844 - 850 .
LIU Q , HUANG SH SH , LU J CH , et al . Phase mask for fabrication of fiber Bragg gratings by femtosecond laser [J]. Opt. Precision Eng. , 2020 , 28 ( 4 ): 844 - 850 . (in Chinese)
计吉焘 , 翟雨生 , 吴志鹏 , 等 . 基于周期性光栅结构的表面等离激元探测 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 526 - 534 . doi: 10.3788/ope.20202803.0526 http://dx.doi.org/10.3788/ope.20202803.0526
JI J T , ZHAI Y SH , WU ZH P , et al . Detection of surface plasmons based on periodic grating structure [J]. Opt. Precision Eng. , 2020 , 28 ( 3 ): 526 - 534 . (in Chinese) . doi: 10.3788/ope.20202803.0526 http://dx.doi.org/10.3788/ope.20202803.0526
王汉斌 , 杨依枫 , 袁志军 , 等 . 光纤激光光谱合束及光栅热效应研究进展 [J]. 强激光与粒子束 , 2020 , 32 ( 12 ): 29 - 48 . doi: 10.11884/HPLPB202032.200240 http://dx.doi.org/10.11884/HPLPB202032.200240
WANG H B , YANG Y F , YUAN ZH J , et al . Research progress on fiber laser spectral beam combining system and grating thermal analysis [J]. High Power Laser and Particle Beams , 2020 , 32 ( 12 ): 29 - 48 . (in Chinese) . doi: 10.11884/HPLPB202032.200240 http://dx.doi.org/10.11884/HPLPB202032.200240
宁永慧 , 刘辉 , 赵庆磊 , 等 . 大面阵高帧频CMOS成像电子学系统设计 [J]. 光学 精密工程 , 2019 , 27 ( 5 ): 1167 - 1177 . doi: 10.3788/ope.20192705.1167 http://dx.doi.org/10.3788/ope.20192705.1167
NING Y H , LIU H , ZHAO Q L , et al . High-frame frequency imaging system of large area CMOS image sensor [J]. Opt. Precision Eng. , 2019 , 27 ( 5 ): 1167 - 1177 . (in Chinese) . doi: 10.3788/ope.20192705.1167 http://dx.doi.org/10.3788/ope.20192705.1167
0
浏览量
826
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构