浏览全部资源
扫码关注微信
中国石油大学(华东) 海洋与空间信息学院,山东 青岛 266580
[ "李忠伟(1978-),男,山西晋城人,教授,博士生导师,2001年于中国石油大学(华东)获得学士学位,2011年于中国石油大学(华东)油气井工程专业获得博士学位,2018年到英国Cardiff大学访学研修,主要从事大数据处理与人工智能算法及其智慧应用方面的研究。E-mail: lizhongwei@upc.edu.cn" ]
[ "王雷全(1981-),男,山东青岛人,博士,高级实验师,硕士生导师,毕业于北京邮电大学信息与通信工程学院,主要从事智能视觉信息处理、跨媒体检索、图像/视频描述、视频理解、深度学习理论与应用等方面的研究。E-mail: 20060068@upc.edu.cn" ]
收稿日期:2021-07-22,
修回日期:2021-08-19,
纸质出版日期:2022-03-10
移动端阅览
李忠伟,张浩,王雷全等.融合空谱-梯度特征的深度高光谱图像去噪[J].光学精密工程,2022,30(05):615-629.
LI Zhongwei,ZHANG Hao,WANG Leiquan,et al.Deep hyperspectral image denoising by fusing space spectrum-gradient features[J].Optics and Precision Engineering,2022,30(05):615-629.
李忠伟,张浩,王雷全等.融合空谱-梯度特征的深度高光谱图像去噪[J].光学精密工程,2022,30(05):615-629. DOI: 10.37188/OPE.2021.0485.
LI Zhongwei,ZHANG Hao,WANG Leiquan,et al.Deep hyperspectral image denoising by fusing space spectrum-gradient features[J].Optics and Precision Engineering,2022,30(05):615-629. DOI: 10.37188/OPE.2021.0485.
为了去除高光谱图像采集过程中产生的噪声,提升后续图像处理的性能,提出了一种融合空谱-梯度特征的深度高光谱图像去噪方法。它包括空谱特征网络和梯度特征网络,且各网络使用密集跳跃连接和可分离卷积策略进行优化。空谱网络模型实现噪声特征的精确提取,梯度网络模型对噪声纹理特征进行补充,最后基于两个网络的特征提取结果进行融合,实现噪声特征的精准刻画,并用于恢复干净图像。分别在合成噪声图像和真实噪声图像上验证方法的有效性。实验结果表明,该方法在恢复图像内部结构上效果显著,在噪声标准差50的条件下去噪结果的平均信噪比达到29.426 dB,平均结构相似性达到0.967 8 dB,去噪结果使用支持向量机算法进行分类,分类精度达到90.89%。
To remove the noise generated during the process of hyperspectral image acquisition and to improve the performance of subsequent image processing, a deep hyperspectral image denoising method was proposed based on the fusion of spacial spectral and gradient features. It included spacial spectral and gradient characteristic networks, and each network was optimized with a dense connection and separable convolution strategy. The spacial spectral network model extracted the noise features, and the gradient network model supplemented the texture features of the noise. Finally, the feature extraction results of the two networks were fused to achieve characterization of the noise features and to restore clean images. In this study, the effectiveness of the proposed method was verified on synthetic-noise and real-noise images. Experimental results showed that the method had a significant effect on the restoration of the internal structure of images. Under the condition of noise standard deviation of 50, the mean PSNR reached 29.426 dB, while the mean SSIM reached 0.967 8 dB. The denoising results and the original image were classified by SVM algorithm, and the classification accuracy reached 90.89%.
贾建鑫 , 孙海彬 , 蒋长辉 , 等 . 多源遥感数据的道路提取技术研究现状及展望 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 430 - 442 . doi: 10.37188/OPE.20212902.0430 http://dx.doi.org/10.37188/OPE.20212902.0430
JIA J X , SUN H B , JIANG CH H , et al . Road extraction technology based on multi-source remote sensing: [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 430 - 442 . (in Chinese) . doi: 10.37188/OPE.20212902.0430 http://dx.doi.org/10.37188/OPE.20212902.0430
PAOLETTI M E , HAUT J M , FERNANDEZ-BELTRAN R , et al . Capsule networks for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 4 ): 2145 - 2160 . doi: 10.1109/tgrs.2018.2871782 http://dx.doi.org/10.1109/tgrs.2018.2871782
PALSSON B , SIGURDSSON J , SVEINSSON J R , et al . Hyperspectral unmixing using a neural network autoencoder [J]. IEEE Access , 2018 , 6 : 25646 - 25656 . doi: 10.1109/access.2018.2818280 http://dx.doi.org/10.1109/access.2018.2818280
YANG B , YANG M H , PLAZA A , et al . Dual-mode FPGA implementation of target and anomaly detection algorithms for real-time hyperspectral imaging [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2015 , 8 ( 6 ): 2950 - 2961 . doi: 10.1109/jstars.2015.2388797 http://dx.doi.org/10.1109/jstars.2015.2388797
FERRARIS V , DOBIGEON N , WEI Q , et al . Robust fusion of multiband images with different spatial and spectral resolutions for change detection [J]. IEEE Transactions on Computational Imaging , 2017 , 3 ( 2 ): 175 - 186 . doi: 10.1109/tci.2017.2692645 http://dx.doi.org/10.1109/tci.2017.2692645
RASTI B , SCHEUNDERS P , GHAMISI P , et al . Noise reduction in hyperspectral imagery: overview and application [J]. Remote Sensing , 2018 , 10 ( 3 ): 482 . doi: 10.3390/rs10030482 http://dx.doi.org/10.3390/rs10030482
张兵 . 高光谱图像处理与信息提取前沿 [J]. 遥感学报 , 2016 , 20 ( 5 ): 1062 - 1090 . doi: 10.11834/jrs.20166179 http://dx.doi.org/10.11834/jrs.20166179
ZHANG B . Advancement of hyperspectral image processing and information extraction [J]. Journal of Remote Sensing , 2016 , 20 ( 5 ): 1062 - 1090 . (in Chinese) . doi: 10.11834/jrs.20166179 http://dx.doi.org/10.11834/jrs.20166179
LU X Q , WANG Y L , YUAN Y . Graph-regularized low-rank representation for destriping of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2013 , 51 ( 7 ): 4009 - 4018 . doi: 10.1109/tgrs.2012.2226730 http://dx.doi.org/10.1109/tgrs.2012.2226730
YAN L , ZHU R X , LIU Y , et al . Scene capture and selected codebook-based refined fuzzy classification of large high-resolution images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 7 ): 4178 - 4192 . doi: 10.1109/TGRS.2018.2828314 http://dx.doi.org/10.1109/TGRS.2018.2828314
BUADES A , COLL B , MOREL J M . A non-local algorithm for image denoising [C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 05 ). 2025,2005 , San Diego, CA, USA. IEEE , 2005: 60 - 65 . doi: 10.1109/cvpr.2005.38 http://dx.doi.org/10.1109/cvpr.2005.38
DABOV K , FOI A , KATKOVNIK V , et al . Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing , 2007 , 16 ( 8 ): 2080 - 2095 . doi: 10.1109/tip.2007.901238 http://dx.doi.org/10.1109/tip.2007.901238
OTHMAN H , QIAN S N . Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage [J]. IEEE Transactions on Geoscience and Remote Sensing , 2006 , 44 ( 2 ): 397 - 408 . doi: 10.1109/tgrs.2005.860982 http://dx.doi.org/10.1109/tgrs.2005.860982
张倩颖 , 谢晓振 . 加权Schatten范数低秩表示的高光谱图像恢复 [J]. 光学 精密工程 , 2019 , 27 ( 2 ): 421 - 432 . doi: 10.3788/ope.20192702.0421 http://dx.doi.org/10.3788/ope.20192702.0421
ZHANG Q Y , XIE X ZH . Hyperspectral image restoration via weighted Schatten norm low-rank representation [J]. Opt. Precision Eng. , 2019 , 27 ( 2 ): 421 - 432 . (in Chinese) . doi: 10.3788/ope.20192702.0421 http://dx.doi.org/10.3788/ope.20192702.0421
ZHANG H Y , HE W , ZHANG L P , et al . Hyperspectral image restoration using low-rank matrix recovery [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 8 ): 4729 - 4743 . doi: 10.1109/tgrs.2013.2284280 http://dx.doi.org/10.1109/tgrs.2013.2284280
JIANG C , ZHANG H Y , ZHANG L P , et al . Hyperspectral image denoising with a combined spatial and spectral weighted hyperspectral total variation model [J]. Canadian Journal of Remote Sensing , 2016 , 42 ( 1 ): 53 - 72 . doi: 10.1080/07038992.2016.1158094 http://dx.doi.org/10.1080/07038992.2016.1158094
XIE Q , ZHAO Q , MENG D Y , et al . Multispectral images denoising by intrinsic tensor sparsity regularization [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 1692 - 1700 . doi: 10.1109/cvpr.2016.187 http://dx.doi.org/10.1109/cvpr.2016.187
张良培 , 李家艺 . 高光谱图像稀疏信息处理综述与展望 [J]. 遥感学报 , 2016 , 20 ( 5 ): 1091 - 1101 . doi: 10.11834/jrs.20166050 http://dx.doi.org/10.11834/jrs.20166050
ZHANG L P , LI J Y . Development and prospect of sparse representation-based hyperspectral image processing and analysis [J]. Journal of Remote Sensing , 2016 , 20 ( 5 ): 1091 - 1101 . (in Chinese) . doi: 10.11834/jrs.20166050 http://dx.doi.org/10.11834/jrs.20166050
ZHU X X , TUIA D , MOU L C , et al . Deep learning in remote sensing: a comprehensive review and list of resources [J]. IEEE Geoscience and Remote Sensing Magazine , 2017 , 5 ( 4 ): 8 - 36 . doi: 10.1109/mgrs.2017.2762307 http://dx.doi.org/10.1109/mgrs.2017.2762307
张少磊 , 付光远 , 汪洪桥 , 等 . 基于向量总变差约束局部光谱解混的高光谱图像超分辨 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2683 - 2692 . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
ZHANG SH L , FU G Y , WANG H Q , et al . Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution [J]. Opt.. Precision Eng. , 2019 , 27 ( 12 ): 2683 - 2692 . (in Chinese) . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
LIU W , LEE J . A 3-D atrous convolution neural network for hyperspectral image denoising [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 8 ): 5701 - 5715 . doi: 10.1109/tgrs.2019.2901737 http://dx.doi.org/10.1109/tgrs.2019.2901737
ZHANG Q , YUAN Q Q , LI J , et al . Hybrid noise removal in hyperspectral imagery with a spatial–spectral gradient network [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 10 ): 7317 - 7329 . doi: 10.1109/tgrs.2019.2912909 http://dx.doi.org/10.1109/tgrs.2019.2912909
MAFFEI A , HAUT J M , PAOLETTI M E , et al . A single model CNN for hyperspectral image denoising [J]. IEEE Transactions on Geoscience and Remote Sensing , 2020 , 58 ( 4 ): 2516 - 2529 . doi: 10.1109/tgrs.2019.2952062 http://dx.doi.org/10.1109/tgrs.2019.2952062
YUAN Q Q , ZHANG Q , LI J , et al . Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 2 ): 1205 - 1218 . doi: 10.1109/tgrs.2018.2865197 http://dx.doi.org/10.1109/tgrs.2018.2865197
YAN Y Y , REN W Q , GUO Y F , et al . Image deblurring via extreme channels prior [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 6978 - 6986 . doi: 10.1109/cvpr.2017.738 http://dx.doi.org/10.1109/cvpr.2017.738
SOBEL I , FELDMAN G . An Isotropic 3 x 3 Image Gradient Operator[R/OL]. Presentation at Stanford AI Project , 1968 . https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator https://www.researchgate.net/publication/239398674_An_Isotropic_3x3_Image_Gradient_Operator
WANG Z , BOVIK A C , SHEIKH H R , et al . Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 . doi: 10.1016/j.jvcir.2019.102655 http://dx.doi.org/10.1016/j.jvcir.2019.102655
HE K M , ZHANG X Y , REN S Q , et al . Delving deep into rectifiers: surpassing human-level performance on ImageNet classification [C]. 2015 IEEE International Conference on Computer Vision (ICCV). 713,2015 , Santiago, Chile. IEEE , 2015 : 1026 - 1034 . doi: 10.1109/iccv.2015.123 http://dx.doi.org/10.1109/iccv.2015.123
0
浏览量
1090
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构