浏览全部资源
扫码关注微信
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "杨 燕(1972-),女,河南临颍人,博士,教授,硕士生导师,1995年于兰州铁道学院获得学士学位,2006年于兰州交通大学获得博士学位,主要从事数字图像处理,智能信息处理及语音信号处理方面的研究。E-mail:yangyantd@mail.lzjtu.cn" ]
[ "张浩文(1996-),男,甘肃武威人,硕士研究生,2019年于长春理工大学获得学士学位,主要从事计算机视觉、数字图像处理方面的研究。E-mail: 1290783944@qq.com" ]
收稿日期:2020-08-18,
修回日期:2020-09-15,
纸质出版日期:2021-02-15
移动端阅览
杨燕,张浩文,张金龙.结合天空分割和透射率映射的图像去雾[J].光学精密工程,2021,29(02):400-410.
YANG Yan,ZHANG Hao-wen,ZHANG Jin-long.Single image dehazing combining sky segmentation and transmission mapping[J].Optics and Precision Engineering,2021,29(02):400-410.
杨燕,张浩文,张金龙.结合天空分割和透射率映射的图像去雾[J].光学精密工程,2021,29(02):400-410. DOI: 10.37188/OPE.20212902.0400.
YANG Yan,ZHANG Hao-wen,ZHANG Jin-long.Single image dehazing combining sky segmentation and transmission mapping[J].Optics and Precision Engineering,2021,29(02):400-410. DOI: 10.37188/OPE.20212902.0400.
针对暗通道先验在天空区域出现轮廓效应和色彩失真等问题,提出天空区域分割和不同区域透射率映射的去雾算法。首先,利用自适应阈值法粗略分割图像天空区域,在天空区域中完成大气光值的估计。其次,结合超像素分割方法改进暗通道,获得初始透射率,利用导向滤波的方法得到细化透射率,对细化透射率进行自适应阈值分割,并保留最大连通域实现天空区域的精细分割。最后,针对天空和非天空区域提出不同的透射率映射方法,得到最终透射率,并利用大气散射模型复原图像。实验结果表明,恢复图像在主观视觉和客观指标方面均表现出色。算法有效地解决了暗通道先验算法容易在天空区域失效的缺陷,可以恢复比较自然的天空,减弱了边缘区域的halo效应。
To solve the contour effect and color distortion problems in the sky area of the dark channel prior algorithm, a dehazing algorithm for sky area segmentation and transmission mapping of different areas is proposed. First, the sky area of an image is roughly segmented using the adaptive threshold method, and the atmospheric light value is estimated in the sky area. Second, the dark channel is improved by applying the super-pixel segmentation method to obtain the initial transmission, and refined transmission is obtained using the guided filtering method. Adaptive threshold segmentation is performed on the refined transmission, and the largest connected domain is retained to achieve fine segmentation of the sky area. Finally, different transmission mapping methods are proposed for the sky and non-sky areas to obtain the final transmission, and the atmospheric scattering model is used to restore the image. Experimental results showed that the restored image performed well in terms of both subjective vision and objective indicators. This effectively solves the defect whereby the dark channel prior algorithm easily fails in the sky area. The proposed dehazing algorithm can restore a more natural sky and weaken the halo effect in the edge area.
KIM J H , JANG W D , SIM J Y , et al . . Optimized contrast enhancement for real-time image and video dehazing [J]. Journal of Visual Communication and Image Representation , 2013 , 24 ( 3 ): 410 - 425 .
刘海波 , 杨杰 , 吴正平 , 等 . 基于暗通道先验和Retinex理论的快速单幅图像去雾方法 [J]. 自动化学报 , 2015 , 41 ( 7 ): 1264 - 1273 .
LIU H B , YANG J , WU ZH P , et al . . Fast single image dehazing method based on dark channel prior and Retinex theory [J]. Acta Automatica Sinica , 2015 , 41 ( 7 ): 1264 - 1273 . (in Chinese)
杨燕 , 刘珑珑 , 张得欣 , 等 . 结合自适应雾气估计的快速单幅图像去雾 [J]. 光学 精密工程 , 2019 , 27 ( 10 ): 2263 - 2271 .
YANG Y , LIU L L , ZHANG D X , et al . . Fast single image dehazing combined with adaptive haze estimation [J]. Opt. Precision Eng. , 2019 , 27 ( 10 ): 2263 - 2271 . (in Chinese)
张峥 , 李奇 , 徐之海 , 等 . 结合颜色线和暗通道的遥感图像去雾 [J]. 光学 精密工程 , 2019 , 27 ( 1 ): 181 - 190 .
ZHANG ZH , LI Q , XU ZH H , et al . . Color-line and dark channel based dehazing for remote sensing images [J]. Opt. Precision Eng. , 2019 , 27 ( 1 ): 181 - 190 . (in Chinese)
KIM S E , PARK T H , EOM I K . Fast single image dehazing using saturation based transmission map estimation [J]. IEEE Transactions on Image Processing , 2019 , 29 : 1985 - 1998 .
陈清江 , 张雪 , 柴昱洲 . 基于卷积神经网络的图像去雾算法 [J]. 液晶与显示 , 2019 , 34 ( 2 ): 220 - 227 .
CHEN Q J , ZHANG X , CHAI Y ZH . Image defogging algorithms based on multiscale convolution neural network [J]. Chinese Journal of Liquid Crystals and Displays , 2019 , 34 ( 2 ): 220 - 227 . (in Chinese)
QIAN W , ZHOU C , ZHANG D . CIASM-Net: A novel convolutional neural network for dehazing image [C]. 2020 5th International Conference on Computer and Communication Systems (ICCCS) . 2020 : 329 - 333 .
ZHANG J , TAO D . FAMED-Net: A fast and accurate multi-scale end-to-end dehazing network [J]. IEEE Transactions on Image Processing , 2019 : 72 - 84 .
LI C , GUO C , GUO J , et al . . PDR-Net: Perception-inspired single image dehazing network with refinement [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 3 ): 704 - 716 .
陈清江 , 张雪 . 混合残差学习与导向滤波算法在图像去雾中的应用 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2702 - 2712 .
CHEN Q J , ZHANG X . Application of hybrid residual learning and guided filtering algorithm in image defogging [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2702 - 2712 . (in Chinese)
HE K , SUN J , TANG X , et al . . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 .
WANG W , JI T , WU X , et al .. Gray projection for single image dehazing [C]. Youth Academic Annual Conference of Chinese Association of Automation , 2018 : 1152 - 1155 .
ZHU Q , MAI J , SHAO L , et al . . A fast single image haze removal algorithm using color attenuation prior [J]. IEEE Transactions on Image Processing , 2015 , 24 ( 11 ): 3522 - 3533 .
KUMAR H , GUPTA S , VENKATESH K S , et al . . Realtime dehazing using colour uniformity principle [J]. Iet Image Processing , 2019 , 13 ( 11 ): 1931 - 1939 .
NAYAR S K , NARASIMHAN S G . Vision in bad weather [C]. International Conference on Computer Vision , 1999 : 820 - 827 .
ACHANTA R , SHAJI A , SMITH K , et al . . SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 11 ): 2274 - 2282 .
MENG G , WANG Y , DUAN J , et al .. Efficient image dehazing with boundary constraint and contextual regularization [C]. International Conference on Computer Vision , 2013 : 617 - 624 .
CAI B , XU X , JIA K , et al . . DehazeNet: an end-to-end system for single image haze removal [J]. IEEE Transactions on Image Processing , 2016 , 25 ( 11 ): 5187 - 5198 .
REN W , LIU S , ZHANG H , et al .. Single image dehazing via multi-scale convolutional neural networks [C]. European Conference on Computer Vision , 2016 : 154 - 169 .
BERMAN D , TREIBITZ T , AVIDAN S , et al .. Non-local image dehazing [C]. Computer Vision and Pattern Recognition , 2016 : 1674 - 1682 .
WANG W , YUAN X , WU X , et al . . Fast image dehazing method based on linear transformation [J]. IEEE Transactions on Multimedia , 2017 , 19 ( 6 ): 1142 - 1155 .
0
浏览量
485
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构