浏览全部资源
扫码关注微信
防灾科技学院 信息工程学院, 河北 三河 065201
[ "冯燕茹(1985-),女,山西长治人,硕士,讲师。2011年于太原理工大学获得硕士学位。主要从事模式识别,网络工程和信息安全方面的研究。E-mail:yrfeng2020@163.com." ]
收稿日期:2020-08-10,
修回日期:2020-10-24,
纸质出版日期:2021-04-15
移动端阅览
冯燕茹.双视觉注意网络的联合图像去雾和透射率估计[J].光学精密工程,2021,29(04):854-863.
FENG Yan-ru.Joint transmission map estimation and image dehazing using dual vision attention network[J].Optics and Precision Engineering,2021,29(04):854-863.
冯燕茹.双视觉注意网络的联合图像去雾和透射率估计[J].光学精密工程,2021,29(04):854-863. DOI: 10.37188/OPE.20212904.0854.
FENG Yan-ru.Joint transmission map estimation and image dehazing using dual vision attention network[J].Optics and Precision Engineering,2021,29(04):854-863. DOI: 10.37188/OPE.20212904.0854.
为充分挖掘和利用透射率估计及图像去雾过程中捕获信息的相关性,提出了双视觉注意网络的联合图像去雾和透射率估计算法。它包括图像去雾层及透射率估计层,且各层均包含循环注意网络及编码解码网络。图像去雾层在透射率图的监督下,由循环注意网络生成雾浓度注意图,并引导后续的编码解码网络估计去雾结果。透射率估计层在真实无雾图像的监督下,由循环注意网络生成场景注意图,并引导后续的编码解码网络估计透射率。在此基础上,进一步利用循环单元实现图像去雾层及透射率估计层的信息交互,以便在估计场景注意图的过程中能利用到雾浓度信息,在预测雾浓度注意图的过程中能学习场景信息。实验表明算法在合成雾图及真实图像上均能取得较好的去雾效果,在视觉评价和客观评价方面均优于存在的去雾算法,单张雾图的处理时间仅为0.043 s。能有效用于图像去雾的工程实践中。
To fully exploit the dependency of information captured from transmission map estimation and image dehazing, this paper proposes a dual vision attention network for jointly estimating transmission map and clear image from hazy image. The network consists of an image dehazing layer and a transmission estimation layer, with each layer containing a recurrent attentive network and an encoder-decoder network. The haze attention map is generated in the image dehazing layer under the supervision of the transmission map in the recurrent attentive network and guides the subsequent encoder-decoder network to estimate the dehazing result. Similarly, with clear image supervision, the recurrent attentive network in the transmission estimation layer generates the scene attention map and guides the subsequent encoder-decoder network to predict the transmission map. Based on this architecture, we adopted the recurrent units in the two recurrent attentive networks to exchange hidden information. The haze concentration information can then be used to estimate the scene attention map, and the scene information can be used to predict the transmission map. The experimental results demonstrate that our method not only achieves a good dehazing effect on both synthetic and real images, but also outperforms the existing methods in terms of quality and quantity. The average processing time for a single hazy image is 0.043 s. Therefore, our method can be used in the engineering practice of image dehazing.
韩昊男 , 钱锋 , 吕建威 , 等 . 改进暗通道先验的航空图像去雾 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1387 - 1394 .
HAN H N , QIAN F , LÜ J W , et al . Aerial image dehazing using improved dark channel prior [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1387 - 1394 . (in Chinese)
谭伟 , 曹世翔 , 齐文雯 , 等 . 一种高分辨率遥感图像去雾霾方法 [J]. 光学学报 , 2019 , 39 ( 3 ): 0301005 .
TAN W , CAO SH X , QI W W , et al . A haze removal method for high-resolution remote sensing images [J]. Acta Agronomica Sinica , 2019 , 39 ( 3 ): 0301005 . (in Chinese)
张峥 , 李奇 , 徐之海 , 等 . 结合颜色线和暗通道的遥感图像去雾 [J]. 光学 精密工程 , 2019 , 27 ( 1 ): 181 - 190 .
ZHANG ZH , LI Q , XU ZH H , et al . Color-line and dark channel based dehazing for remote sensing images [J]. Opt. Precision Eng. , 2019 , 27 ( 1 ): 181 - 190 . (in Chinese)
王一斌 , 尹诗白 , 吕卓纹 . 自适应背景光估计与非局部先验的水下图像复原 [J]. 光学 精密工程 , 2019 , 27 ( 2 ): 499 - 509 .
WANG Y B , YIN SH B , LÜ ZH W . Under image restoration with adaptive background light estimation and non-local prior [J]. Opt. Precision Eng. , 2019 , 27 ( 2 ): 499 - 509 . (in Chinese)
HE K , SUN J , TANG X . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2010 , 33 ( 12 ): 2341 - 2353 .
BERMAN D , AVIDAN S . Non-local image dehazing [C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition , 2016 : 1674 - 1682 .
MENG G , WANG Y , DUAN J , et al . Efficient image dehazing with boundary constraint and contextual regularization [C]. Proceedings of the IEEE International Conference on Computer Vision , 2013 : 617 - 624 .
陈永 , 郭红光 , 艾亚鹏 . 基于多尺度卷积神经网络的单幅图像去雾方法 [J]. 光学学报 , 2019 , 39 ( 10 ): 1010001 .
CHEN Y , GUO H G , AI Y P . Single image dehazing method based on multi-scale convolution neural network [J]. Acta Optica Sinica , 2019 , 39 ( 10 ): 1010001 . (in Chinese)
CAI B , XU X , JIA K , et al . Dehazenet: An end-to-end system for single image haze removal [J]. IEEE Transactions on Image Processing , 2016 , 25 ( 11 ): 5187 - 5198 .
LI B , PENG X , WANG Z , et al . Aod-net: All-in-one dehazing network [C]. Proceedings of the IEEE International Conference on Computer Vision , 2017 : 4770 - 4778 .
QU Y , CHEN Y , HUANG J , et al . Enhanced pix2pix dehazing network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2019 : 8160 - 8168 .
LIU X , MA Y , SHI Z , et al . Griddehazenet: Attention-based multi-scale network for image dehazing [C]. Proceedings of the IEEE International Conference on Computer Vision , 2019 : 7314 - 7323 .
ZHANG H , PATEL V M . Densely connected pyramid dehazing network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2019 : 3194 - 3203 .
ZHANG H , SINDAGIV , PATEL V M . Joint transmission map estimation and dehazing using deep networks [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2019 .
REN H , EI-KHAMY M , LEE J . Dn-resnet: Efficient deep residual network for image denoising [C]. Asian Conference on Computer Vision . Springer , Cham , 2018 : 215 - 230 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J]. Neural computation , 1997 , 9 ( 8 ): 1735 - 1780 .
陈清江 , 张雪 , 柴昱洲 . 基于卷积神经网络的图像去雾算法 [J]. 液晶与显示 , 2019 , 34 ( 2 ): 220 - 227 .
CHEN Q J , ZHANG X , CHAI Y ZH . Image defogging algorithms based on multiscale convolution neural network [J]. Chinese Journal of Liquid Crystals and Displays , 2019 , 34 ( 2 ): 220 - 227 . (in chinese)
SILBERMAN N , HOIEM D , KOHLI P , et al . Indoor segmentation and support inference from rgbd images [C]. European conference on computer vision . Springer , Berlin, Heidelberg , 2012 : 746 - 760 .
LI B , REN W , FU D , et al . Benchmarking single-image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2018 , 28 ( 1 ): 492 - 505 .
0
浏览量
345
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构