浏览全部资源
扫码关注微信
1. 五邑大学 智能制造学部,广东 江门 529020
2. 华南理工大学 自动化科学与工程学院,广东 广州 510640
3. 江门市妇幼保健院,广东 江门 529020
[ " 秦传波(1982-),男,安徽宿州人,博士,讲师,硕士生导师,分别于2004年、2008年在五邑大学取得学士、硕士学位,2015年在华南理工大学获得博士学位,主要研究方向为医学影像处理、生物特征识别。E-mail:tenround@163.com " ]
[ " 曾军英(1977-),男,江西赣州人,博士,副教授,硕士生导师,2005年在云南大学取得硕士学位,2008年在北京邮电大学获得博士学位,主要研究方向为图像处理、生物特征识别。E-mail:zengjunying@126.com " ]
收稿日期:2020-08-28,
修回日期:2020-10-16,
纸质出版日期:2021-04-15
移动端阅览
秦传波,宋子玉,曾军英等.联合多尺度和注意力-残差的深度监督乳腺癌分割[J].光学精密工程,2021,29(04):877-895.
QIN Chuan-bo,SONG Zi-yu,ZENG Jun-ying,et al.Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J].Optics and Precision Engineering,2021,29(04):877-895.
秦传波,宋子玉,曾军英等.联合多尺度和注意力-残差的深度监督乳腺癌分割[J].光学精密工程,2021,29(04):877-895. DOI: 10.37188/OPE.20212904.0877.
QIN Chuan-bo,SONG Zi-yu,ZENG Jun-ying,et al.Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J].Optics and Precision Engineering,2021,29(04):877-895. DOI: 10.37188/OPE.20212904.0877.
针对DCE-MRI 乳腺癌病变区的浸润范围勾画精度低、结构形态变化大、强度不均和边界对比度低等原因,导致乳腺癌病变区自动化分割存在准确率低和错分割的问题,为此,本文构建了一个二阶段乳腺癌病变区分割框架,提出一种乳腺癌病变区分割模型UTB-net,分别在编码路径和末端整合多尺度和Non-local,在解码路径构建注意力-残差模块。首先,利用基准U-net网络模型实现对乳房区域的粗糙勾画,消除影像中胸肌肉、脂肪、心脏等不相关组织对乳腺癌分割的影响。然后,基于提取的ROI结果,在模型的编码路径嵌入了多尺度信息融合和Non-local模块。最后,在解码路径构建了一种注意力-残差混合解码模块,并引入深度监督机制,以提高乳腺癌病灶的分割精度。实验结果表明:相较于U-Net基准模型,乳腺癌分割指标DICE,IOU,SEN,PPV分别提升了4%,4.78%,5.92%和3.94%。所提模型在提高了乳腺癌分割结果的同时,减少了小面积误分割和钙化分割。
Given the low accuracy of delineation of the infiltration area of breast cancer lesions in DCE-MRI, variable structure and shape, large intensity heterogeneity changes, and low boundary contrast, the automatic segmentation of breast cancer lesions has the problems of low accuracy and mis-segmentation. For this reason, a two-stage breast cancer image segmentation framework is constructed, and a breast cancer lesion segmentation model UTB-net is proposed to integrate multi-scale and non-local at the encoding path and the end, respectively, which constructs attention-residuals in the decoding module. First, the benchmark U-net network model is used to achieve a rough delineation of the breast area, eliminating the influence of unrelated tissues, such as chest muscle, fat, and the heart, on breast tumor segmentation in the image. Then, based on the extracted ROI results, a multi-scale information fused and non-local module is constructed in the coding path of the model. Finally, an attention-residual hybrid decoding module is constructed in the decoding path, and a deep supervision mechanism is introduced to improve the segmentation accuracy of breast tumor lesions. Experimental results show that breast tumor segmentation indexes DICE, IOU, SEN, and PPV increase by 4%, 4.78%, 5.92%, and 3.94% respectively, in comparison with the U-Net benchmark model. The proposed model not only improves the segmentation results of breast cancer but also reduces the small-area mis-segmentation and calcification segmentation.
LITJENS G , KOOI T , BEJNORDI B E , et al . A survey on deep learning in medical image analysis [J]. Medical Image Analysis , 2017 , 42 ( 9 ): 60 - 88 .
LI S , DONG M , DU G , et al . Attention dense-u-net for automatic breast mass segmentation in digital mammogram [J]. IEEE Access , 2019 , ( 99 ): 1 - 1 .
周国华 , 蒋晖 , 顾晓清 , 等 . 多视角判别度量学习的乳腺影像检索方法 [J]. 液晶与显示 , 2020 , 35 ( 6 ): 619 - 630 .
ZHOU G H , JIANG H , GU X Q , et al . Multi-view metric learning with Fisher discriminant analysis and its applications for breast image retrieval [J]. Chinese Journal of Liquid Crystals and Displays , 2020 , 35 ( 6 ): 619 - 630 . (in Chinese)
LIU L L , CHENG J H , QUAN Q , et al . A survey on u-shaped networks in medical image segmentations [J]. Neurocomputing , 2020 , 409 : 224 - 258 .
JANA M , OLGA C , MAJA M . Automated breast-region segmentation in the axial breast MR images [J]. Computers in Biology and Medicine , 2015 , 62 : 55 - 64 .
ZHENG Y , BALOCH S , ENGLANDER S , et al . Segmentation and Classification of breast tumors Using Dynamic Contrast-Enhanced MR Images . In: Ayache N., Ourselin S., Maeder A. (eds) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007 [ J ].
Lecture Notes in Computer Science , 4792 : 393 - 401 . Springer, Berlin, Heidberg .
ASHRAF A , GAVENONIS S , DAYE D , et al . A multi-channel markov random field framework for tumor segmentation with an application to classification of gene expression based breast cancer recurrence risk [J]. IEEE Transactions on Medical Imaging , 2013 , 32 ( 4 ): 637 - 648 .
冯宝 , 陈业航 , 刘壮盛 , 等 . 结合MRF能量和模糊速度的乳腺癌图像分割方法 [J]. 自动化学报 , 2019 . 2020 , 46 ( 6 ): 1188 - 1199 .
FENG B , CHEN Y HA , LIU ZH SH , et al . Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function [J]. Acta Automatica Sinica , 2020 , 46 ( 6 ): 1188 - 1199 . (in Chinese)
范丽丽 , 赵宏伟 , 赵浩宇 , 等 . 基于深度卷积神经网络的目标检测研究综述 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1152 - 1164 .
FAN L L , ZHAO H W , ZHAO H Y , et al . Survey of target detection based on deep convolutional neural networks [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1152 - 1164 . (in Chinese)
陈彦彤 , 陈伟楠 , 张献中 , 等 . 基于深度卷积神经网络的蝇类面部识别 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1558 - 1567 .
CHEN Y T , CHEN W N , ZHANG X ZH , et al . Fly facial recognition based on deep convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1558 - 1567 . (in Chinese)
ZHANG J , SAHA A , ZHU Z , et al . Hierarchical Convolutional Neural Networks for Segmentation of breast tumors in MRI with Application to Radiogenomics [J]. IEEE Transactions on Medical Imaging , 2018 , 38 ( 2 ): 435 - 447 .
OKTAY O , SCHLEMPER J , FOLGOC L , et al . Attention u-net: Learning where to look for the pancreas [J]. arXiv preprint arXiv: 1804.03999 , 2018 .
LEE C Y , XIE S N , GALLAGHER P , et al . Deeply-supervised nets [C]. 2015 . arXiv preprint arXiv : 1409.5185v2 .
徐胜军 , 欧阳朴衍 , 郭学源 , 等 . 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1588 - 1599 .
XU SH J , OU Y P , GUO X Y , et al . Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1588 - 1599 . (in Chinese)
LI C , SUN H , LIU Z , et al . Learning cross-modal deep representations for multi-modal mr image segmentation [C]. 2019 Medical Image Computing and Computer Assisted Intervention-MICCAI 2019 . MICCAI 2019 , LNCS 11765 : 57 - 65 .
WEI D , WEINSTEIN S , HSIEH M K , et al . Three-dimensional whole breast segmentation in sagittal and axial breast mri with dense depth field modeling and localized self-adaptation for chest-wall line detection [J]. IEEE Transactions on Biomedical Engineering , 2019 , 66 ( 6 ): 1567 - 1579 .
GABRIELE P , MARIO S , ROBERTA F , et al . Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks [J]. Artificial Intelligence in Medicine , 2019 , 103 : 101781 .
RONNEBERGER O , FISCHER P , BROX T . U-Net: Convolutional Networks for biomedical image segmentation [J]. International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI , 2015 . Cham:Springer; 2015 : 234 - 241 .
WANG X , GIRSHICK R , GUPTA A , et al . Non-local neural networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2018 : 7794 - 7803 .
WU Y , HE K . Group normalization [C]. Proceedings of the European Conference on Computer Vision (ECCV) , 2018 : 3 - 19 .
SZEGEDY C , VANHOUCKE V , IOFFE S , et al . Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016 : 2818 - 2826 .
HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016 : 770 - 778 .
HE K , ZHANG X , REN S , et al . Delving deep into rectifiers: Surpassing human-level performance on image net classification [C]. Proceedings of the IEEE International Conference on Computer vision , 2015 : 1026 - 1034 .
SALEHI S S M , ERDOGMUS D , GHOLIPOUR A . Tversky loss function for image segmentation using 3D fully convolutional deep networks [C]. International Workshop on Machine Learning in Medical Imaging , Springer , Cham , 2017 : 379 - 387 .
KINGMA D P , BA J . Adam: A method for stochastic optimization [J]. arXiv preprint arXiv: 1412.6980 , 2014 .
MILLETARI F , NAVAB N , AHMADI S . V-net: fully convolutional neural networks for volumetric medical image segmentation [C]. 2016 Fourth International Conference on 3D Vision (3DV) , Stanford, CA , 2016 : 565 - 571 .
LI X , CHEN H , QI X , et al . H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes [J]. IEEE transactions on medical imaging , 2018 , 37 ( 12 ): 2663 - 2674 .
HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition [C] IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2016 : 770 - 778 .
PHILLIP I , ZHU J Y , ZHO T H , et al . Efros. Image - to - Image Translation with Conditional Adversarial Networks [J]. arXiv preprint , arXiv: 1611 . 07004 v 3 , 2016 .
SELVARAJU R R , COGSWELL M , DAS A , et al . Grad-cam:Visual explanations from deep networks via gradient-based localization [C]. Proceedings of the IEEE International Conference on Computer Vision(CVPR) , 2017 : 618 - 626 .
0
浏览量
346
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构