浏览全部资源
扫码关注微信
浙江师范大学 浙江省城市轨道交通智能运维技术与装备重点实验室,浙江 金华 321004
[ "胡意立(1989-),男,浙江杭州人,博士,讲师,2020年于上海交通大学获得博士学位,现为浙江师范大学讲师,主要研究方向为压电能量采集技术与压电驱动与控制技术。E-mail: huyili@zjnu.edu.cn" ]
[ "温建明(1980-),男,河北承德人,博士,教授,2009年于吉林大学获得工学博士学位,现为浙江师范大学教务处副处长,主要从事压电驱动与控制技术、生物细胞电阻抗检测技术方向的研究。E-mail: wjming@zjnu.cn" ]
收稿日期:2020-11-13,
修回日期:2020-12-17,
纸质出版日期:2021-06-15
移动端阅览
胡意立,胡影,李建平等.具有“前进-前进”运动模式的惯性压电驱动器[J].光学精密工程,2021,29(06):1356-1364.
HU Yi-li,HU Ying,LI Jian-ping,et al.Piezoelectric inertial actuator with “forward-forward” motion mode[J].Optics and Precision Engineering,2021,29(06):1356-1364.
胡意立,胡影,李建平等.具有“前进-前进”运动模式的惯性压电驱动器[J].光学精密工程,2021,29(06):1356-1364. DOI: 10.37188/OPE.20212906.1356.
HU Yi-li,HU Ying,LI Jian-ping,et al.Piezoelectric inertial actuator with “forward-forward” motion mode[J].Optics and Precision Engineering,2021,29(06):1356-1364. DOI: 10.37188/OPE.20212906.1356.
针对传统压电惯性驱动器普遍存在的回退问题,创造性地提出双振子反向连接的接线方式,在此基础上设计了一种惯性压电直线驱动器。基于这种接线方式,可以使驱动器工作在“前进-前进”运动模式,从原理上彻底消除回退现象。首先,为了更好地理解驱动器的运动特性,深入分析了反接条件下的驱动器的运动原理并初步建立了理论模型。接下来,本文设计并制作了试验样机,搭建了试验系统,进行了一系列试验探究该驱动器在正接(传统的接线方式)、反接(所提出的接线方式)两种接线方式下的运动性能。此外,为了评估驱动器的应用价值,利用斑马鱼胚胎进行了细胞药物注射模拟实验。试验结果表明:相较于“前进-回退”的运动模式,在“前进-前进”的运动模式下,驱动器可以实现无回退,能量转换效率从2.16%提高至2.60%,运动速度从6.08 µm/s增大至7.88 µm/s,最大偏差为0.12 µm,标准偏差为0.035 6。所设计的驱动器具有较高的稳定性和能量转换效率,并且完全解决了回退问题,有望用于细胞操作和微电极植入等领域。
To solve the problem of backward motion existing in traditional piezoelectric inertial actuators, we designed an inertial piezoelectric linear actuator on the basis of the converse wiring method of double vibrators. The actuator operates in the “forward-forward” motion mode of the converse wiring method, which, in principle, completely eliminates the problem of backward motion. First, to better understand the motion characteristics of the actuator, we performed an in-depth analysis of the working principle of the actuator with the converse method and preliminarily developed a theoretical model. Next, we designed and fabricated a prototype and built an experimental system to perform a series of experiments to explore the motion performance of the actuator in the direct wiring mode (traditional wiring mode) and the converse wiring mode (proposed wiring mode). The experimental results indicated that the backward/forward rate reached 0 under the forward-forward motion mode, the energy conversion efficiency increased from 2.16% to 2.60%, the average speed increased from 6.08 μm/s to 7.88 μm/s, the maximum deviation was 0.12 μm, and the standard deviation was 0.035 6. In general, the designed actuator has high stability and energy conversion efficiency, and completely solves the problem of backward motion, thus showing that it has great application potential in cell manipulation and other micromanipulation fields.
WANG L , CHEN W S , LIU J K . A review of recent studies on non-resonant piezoelectric actuators [J]. Mechanical Systems and Signal Processing , 2019 , 133 : 106254 .
NOMURAYOSHIHIRO , AOYAMAHISAYUKI . Development of Inertia Driven Micro Robot with Nano Tilting Stage for SEM Operation [M]. Springer-Verlag , 2007 .
WANG G W , Xu Q S . Design and precision position/force control of a piezo-driven microinjection system [J]. IEEE/ASME Transactions on Mechatronics , 2017 , 22 ( 4 ): 1744 - 1754 .
庄健、王志武、廖晓波 . 应用于高速离子电导扫描成像的双压电定位平台 [J]. 光学 精密工程 , 2020 , v. 28 ( 10 ): 106 - 117 .
ZHANG J , WANG Z W , LIAO X B , et al . Dual-stage piezo nanopositioner for high-speed ion conductance microscopy imaging [J]. Opt. Precision Eng. , 2020 . (in Chinese)
LIU Y X , YAN J P , WANG L , et al . A Two-DOF Ultrasonic Motor Using a Longitudinal–Bending Hybrid Sandwich Transducer [J]. IEEE Transactions on Industrial Electronics , 2018 .
LI P Z , Li P Y , Sui Y X . Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application [J]. IEEE Transactions on Fuzzy Systems , 2016 , 24 ( 5 ): 1246 - 1254 .
ZHANG S J , LIU Y X , DENG J , et al . Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs [J]. Mechanical Systems and Signal Processing , 2020 , 149 : 107213 .
WANG R M , HU Y L , SHEN D Z , et al . A novel piezoelectric inchworm actuator driven by one channel dc signal [J]. IEEE Transactions on Industrial Electronics , 2020 , PP( 99 ): 1 - 1 .
RONG W B , LIANG S , WANG L F , et al . Model and control of a compact long-travel accurate-manipulation platform [J]. IEEE/ASME transactions on mechatronics: A joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division , 2017 , 22 ( 1 ): 402 - 411 .
HU Y L , WANG R M , WEN J M , et al . A low-frequency structure-control-type inertial actuator using miniaturized bimorph piezoelectric vibrators [J]. IEEE Transactions on Industrial Electronics , 2019 , 66 ( 8 ): 6179 - 6188 .
温建明 , 鲍慧璐 , 沈德助 , 等 . 磁流变液控制式惯性压电旋转驱动器 [J]. 光学 精密工程 , 2019 , v. 27 ( 10 ): 127 - 133 .
WEN J M , BAO H L , SHEN D Z , et al . Piezoelectric inertial rotary actuator based on magnetorheological fluid control [J]. Opt. Precision Eng. , 2019 . (in Chinese)
程光明 , 张海滨 , 温建明 , 等 . 非对称夹持惯性压电旋转驱动器 [J]. 机械工程学报 , 2015 ,( 17 ): 83 - 89 .
CHENG G M , ZHANG H B , WEN J M , et al . Impact drive rotary actuator by piezoelectric bimorphs with asymmetrical gripper [J]. Journal of Mechanical Engineering , 2015 ,( 17 ): 83 - 89 . (in Chinese)
程光明 , 邢春美 , 温建明 , 等 . 机械控制式惯性压电旋转驱动器 [J]. 光学 精密工程 , 2015 , 23 ( 12 ): 3364 - 3370 .
CHENG G M , XING C M , WEN J M , et al . Mechanical controlled piezoelectric inertial rotary actuators [J]. Opt. Precision Eng. , 2015 , 23 ( 12 ): 3364 - 3370 . (in Chinese)
DALIUS M , PIOTR V , SERGEJUS B , et al . Small size piezoelectric impact drive actuator with rectangular bimorphs [J]. Sensors & Actuators A Physical , 2018 , 280 : 76 - 84 .
WEN J M , SHEN D Z , WANG R M , et al . A two-fixed-end beam piezoelectric inertial actuator using electromagnet controlled magnetorheological fluid (MRF) for friction regulation [J]. Smart Materials & Structures , 2020 , 29 ( 6 ): 065011 .
WANG L , CHEN D , CHENG T H , et al . A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism [J]. Smart Materials & Structures , 2016 , 25 ( 8 ): 085033 .
YANG Z X , ZHOU X Q , HUANG H , et al . On the Suppression of the Backward Motion of a Piezo-driven Precision Positioning Platform Designed by the Parasitic Motion Principle [J]. IEEE Transactions on Industrial Electronics , 2019 , PP(99).
ZHANG E , HU Y L , BAO H L , et al . A linear inertial piezoelectric actuator using a single bimorph vibrator [J]. Smart Materials and Structures , 2019 , 28 ( 11 ).
CHENG G M , HU Y L , WEN J M , et al . Piezoelectric inertial rotary actuators based on asymmetrically clamping structures [J]. Sensors and Actuators A: Physical , 2015 , 223 : 125 - 133 .
HU Y L , LIN S R , MA J J , et al . Piezoelectric inertial rotary actuator operating in two-step motion mode for eliminating backward motion [J]. Applied Physics Letters , 2020 , 117 ( 3 ): 031902 .
马立 , 王敬萍 , 李丰甜 , 等 . 精密定位系统的摩擦力建模与补偿 [J]. 光学 精密工程 , 2019 , 27 ( 01 ): 121 - 128 .
MA L , WANG J P , LI F T , et al . Friction modeling and compensation of precision position system [J]. Opt. Precision Eng. , 2019 . (in Chinese)
LI J P , HUANG H , ZHAO H W . A piezoelectric-driven linear actuator by means of coupling motion [J]. IEEE Transactions on Industrial Electronics , 2018 , 65 ( 3 ): 2458 - 2466 .
0
浏览量
737
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构