浏览全部资源
扫码关注微信
1.西安邮电大学 电子工程学院,陕西 西安 710121
2.重庆邮电大学 计算机科学与技术学院,重庆 400065
3.西安电子科技大学 电子工程学院,陕西 西安 710071
[ "刘 敬(1975—),女,安徽宿州人,博士,副教授,硕士生导师,2004年于西安电子科技大学获硕士学位,2009年于西安电子科技大学获博士学位,主要从事高光谱遥感影像光谱特征提取、地物分类、和解混方面的研究。E-mail:zyhalj1975@163.com" ]
[ "李青妍(1995—),女,山西运城人,博士研究生,2020年于西安邮电大学获得硕士学位,现为重庆邮电大学博士研究生,主要从事遥感影像特征提取和地物分类方面的研究。E-mail:labcqy@163.com" ]
[ "刘 逸(1976—),男,安徽宿州人,博士,讲师。2002年于西安电子科技大学获硕士学位,2013年于西安电子科技大学获博士学位,主要从事计算智能,高光谱遥感影像地物分类方面的研究。E-mail:yiliu@xidian.edu.cn" ]
收稿日期:2020-07-06,
修回日期:2020-09-05,
纸质出版日期:2021-06-15
移动端阅览
刘敬,李青妍,刘逸.基于核加权类对准则的高光谱影像特征提取[J].光学精密工程,2021,29(06):1397-1405.
LIU Jing,LI Qing-yan,LIU Yi.Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J].Optics and Precision Engineering,2021,29(06):1397-1405.
刘敬,李青妍,刘逸.基于核加权类对准则的高光谱影像特征提取[J].光学精密工程,2021,29(06):1397-1405. DOI: 10.37188/OPE.20212906.1397.
LIU Jing,LI Qing-yan,LIU Yi.Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J].Optics and Precision Engineering,2021,29(06):1397-1405. DOI: 10.37188/OPE.20212906.1397.
针对高光谱遥感影像中相似光谱的不同地物与野类同时存在时,提取有效的非线性可分性特征的问题,提出一种核加权类对准则。首先,推导出类对形式的核线性判别分析准则,即核类对准则,将核类间和类内散布矩阵均表示为类对形式。然后,提出核加权类对准则,依据核空间中各类对的可分性分别对各类对的核类间和类内散布矩阵进行加权,使得各类对的可分性均衡地保留在特征子空间中。采用K近邻分类器和最小距离分类器评估特征提取的效果。基于两个实测高光谱遥感影像的实验结果均表明:相比原空间法、核线性判别分析方法和kernel weighted pairwise Fisher准则,所提核加权类对准则在降维的同时,通过提高可分性小的类对的识别率来提高整体地物识别率。
To extract efficient nonlinear discriminant features when foreign objects, with similar spectra and outlier classes, are present in hyperspectral remote sensing images (HRSIs), a kernel class pair-weighted (KCP-weighted) criterion is proposed. First, we derive a class pair form of the kernel linear discriminant analysis (KLDA) criterion, viz. the kernel class pair (KCP) criterion, in which the kernel-between-class and kernel-within-class scatter matrices are both expressed in the form of class pairs. Then, the KCP-weighted criterion is proposed to weight the kernel-between-class and kernel-within-class scatter matrices of each class pair according to their separability in a kernel space. The KCP-weighted criterion can ensure that the separabilities of class pairs are balanced in the KCP-weighted feature subspace. Finally, the K-nearest neighbor and minimum distance classifiers are used to evaluate the feature extraction performance. Experimental results of two real HRSIs show that, compared with the original space and KLDA methods as well as the kernel weighted pairwise Fisher criterion, the presented KCP-weighted criterion can effectively improve the overall terrain classification rate while reducing the dimensionality of the data.
朱福全 , 王华军 , 杨丽平 , 等 . 自适应波段选择与最佳预测顺序的高光谱图像无损压缩 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1609 - 1617 .
ZHU F Q , WANG H J , YANG L P , et al . Hyperspectral image lossless compressionusing adaptive bands selection and optimal prediction sequence [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1609 - 1617 . (in Chinese)
黄鸿 , 李政英 , 石光耀 , 等 . 面向高光谱影像分类的多特征流形鉴别嵌入 [J]. 光学 精密工程 , 2019 , 27 ( 3 ): 726 - 738 .
HUANG H , LI ZH Y , SHI G Y , et al . Multi-features manifold discriminant embedding for hyperspectral image classification [J]. Opt. Precision Eng. , 2019 , 27 ( 3 ): 726 - 738 . (in Chinese)
黄鸿 , 唐玉枭 , 段宇乐 . 半监督多图嵌入的高光谱影像特征提取 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 443 - 456 .
HUANG H , TANG Y X , DUAN Y L . Feature extraction of hyperspectral image with semi-supervised multi-graph embedding [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 443 - 456 . (in Chinese)
丁国绅 , 乔延利 , 易维宁 , 等 . 基于高光谱图像的改进SIFT特征提取与匹配 [J]. 光学 精密工程 , 2020 , 28 ( 4 ): 954 - 962 .
DING G K , QIAO Y L , YI W N , et al . Improved SIFT feature extraction and matching technology based on hyperspectral image [J]. Opt. Precision Eng. , 2020 , 28 ( 4 ): 954 - 962 . (in Chinese)
CHEN M L , WANG Q , LI X L . Discriminant analysis with graph learning for hyperspectral image classification [J]. Remote Sensing , 2018 , 10 ( 6 ): 836 .
HE L , LI J , LIU C , et al . Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines [J]. IEEE Transactions on Geoscience and Remote Sensing , 2017 , 56 ( 3 ): 1579 - 1597 .
BAUDAT G , ANOUAR F . Generalized discriminant analysis using a kernel approach [J]. Neural Computation , 2000 , 12 ( 10 ), 2385 - 2404 .
DAI G , YEUNG D Y , CHANG H . Extending kernel fisher discriminant analysis with the weighted pairwise Chernoff criterion [C]. European Conference on Computer Vision , 2006 : 308 - 320 .
LU F , LI H . KLDA-an iterative approach to Fisher discriminant analysis [C]. 2007 IEEE International Conference on Image Processing , 2007 2(II): 201 - 204 .
LIU J , LI Q Y , LIU Y . Spectral feature extraction of hyperspectral remote sensing images based on class pair-weighted criterion [J]. Journal of Applied Remote Sensing , 2019 , 13 ( 4 ): 046504 .
LOOG M . Approximate Pairwise Accuracy Criteria for Multiclass Linear Dimension Reduction : Generalisations of the Fisher Criterion [M]. WBBM Report Series 44 : Delft University Press , 1999 : 15 - 20 .
LOOG M , DUIN R P W , HAEB-UMBACH R . Multiclass linear dimension reduction by weighted pairwise Fisher criteria [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence , 2001 , 23 ( 7 ): 762 - 766 .
Hyperspectral data set [OL].[ 2020-1-9 ]. http://www.ehu.eus/ccwintco/index.php/ Hyperspectral_ Remote_ Sensing_Scenes http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes .
0
浏览量
497
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构