1.中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
2.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
[ "海 阔(1991-),男,吉林吉林人,博士,工程师。2015年于西安交通大学获得理学学士学位,2020年于长春光机所获得博士学位。主要从事光学精密与超精密加工与检测方面的研究。E-mail:824639163@qq.com" ]
[ "曾雪锋(1987-),男,江西省抚州人,博士,副研究员,2009年于南京理工大学获工学学士学位,2014年于长春光机所获得博士学位。主要从事先进光学制造技术方面研究。E-mail:zengxf@ciomp.ac.cn" ]
扫 描 看 全 文
海阔, 曾雪锋, 李锐钢, 等. 预置曲率研磨盘提高行星研磨技术去除函数稳定性[J]. 光学精密工程, 2021,29(7):1620-1630.
Kuo HAI, Xue-feng ZENG, Rui-gang LI, et al. Method for improving the stability of removal function of planetary grinding technology by presetting curvature grinding disk[J]. Optics and Precision Engineering, 2021,29(7):1620-1630.
海阔, 曾雪锋, 李锐钢, 等. 预置曲率研磨盘提高行星研磨技术去除函数稳定性[J]. 光学精密工程, 2021,29(7):1620-1630. DOI: 10.37188/OPE.20212907.1620.
Kuo HAI, Xue-feng ZENG, Rui-gang LI, et al. Method for improving the stability of removal function of planetary grinding technology by presetting curvature grinding disk[J]. Optics and Precision Engineering, 2021,29(7):1620-1630. DOI: 10.37188/OPE.20212907.1620.
行星研磨技术由于提升磨削接触点相对速度,能够有效提高材料去除效率。但由于传统研磨盘不均匀磨损,导致研磨盘形状持续改变,从而影响了研磨过程中去除函数的稳定性和准确性,限制了该技术的应用。本文针对基于小磨头行星运动方式,通过建立构建磨损函数,预置研磨盘曲率半径,使研磨盘满足在加工单周期后各点去除量相等,从而提升去除函数稳定性。通过实验验证,研磨去除函数与模型仿真计算结果一致,验证了模型的准确性,利用优化后的研磨盘可获得高效稳定的去除函数。采用直径40 mm SiC研磨盘研磨SiC工件,实验结果表明:对比加工前后研磨盘磨损情况,面形变化小于1%,符合均匀去除要求;对比多组不同研磨阶段去除函数,体积去除率误差小于2.3%,满足光学研磨去除函数稳定性要求;在公转100 r·min,-,1,,自转-100 r·min,-,1,条件下,体积去除率达到6.879 mm,3,·min,-,1,,比同样参数下的平转动研磨提高了40.9%的去除量。证明了行星研磨技术能够通过参数设计获得高稳定性的高效去除函数,为行星运动研磨技术应用于SiC镜片高效加工提了供可靠的理论指导。
Planetary grinding technology can effectively improve material removal efficiency by improving the relative velocity of grinding contact points. However, the uneven wear of the traditional grinding disk (or grinding plate) results in the continuous change of the shape of the grinding disk, which affects the stability and accuracy of the removal function in the grinding process, and also limits the application of this technology. In this study, based on the planetary motion mode of a small grinding head, the wear function was established and the curvature radius of the grinding disk was preset to ensure that the removal amount at each point of the grinding disk was equal after a single processing cycle to improve the removal function stability. Experimental verification was also carried out, and the grinding removal function was found to be consistent with the simulation calculation results obtained using the model, which verified the accuracy of the model. Finally, an efficient and stable removal function was obtained by using the optimized grinding disk. A SiC grinding disk with a diameter of 40 mm was used to grind the SiC workpiece. The experimental results showed that the surface shape changed by less than 1% after comparing the wear of the disk before and after machining, and the volume removal error was less than 2.3%, which meets the stability requirements of the optical grinding removal function. Under the conditions of revolution at 100 r·min,-,1, and rotation at ,-,100 r·min,-,1,, the volume removal rate reached 6.879 mm,3,·min,-,1,. Compared with the single rotation grinding with the same parameters, the removal amount of 40.9% was increased, which proved that the planetary grinding technology can obtain a highly stable and efficient removal function based on parameter design, and provided reliable theoretical guidance for the application of planetary motion grinding technology in the efficient processing of SiC mirror.
光学加工行星运动研磨研磨盘磨损模型去除函数稳定性
Optical processingPlanetary motion grindingWear model of grinding plateStability of removal function
王旭,张学军. 固着磨料数控加工碳化硅反射镜工艺研究[D].长春:长春光机所,2010.5.
WANG X, ZHANG X J. Experimental study on computer controlled grinding and polishing SiC mirror with fixed abrasive [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2010:5.(in Chinese)
王孝坤, 薛栋林, 张学军. 大口径非球面系统的共基准加工与检验[J]. 光学 精密工程, 2018, 26(4): 743-748.
WANG X K, XUE D L, ZHANG X J. Fabrication and testing of large aspheric system based on common reference[J]. Editorial Office of Optics and Precision Engineering, 2018, 26(4): 743-748.(in Chinese)
殷龙海, 王孝坤, 李龙响, 等. 大口径SiC离轴非球面的高效磨削加工[J]. 光学 精密工程, 2015, 23(9): 2497-2505.
YIN L H, WANG X K, LI L X, et al. Fast grinding of large SiC off-axis aspheric surface[J]. Editorial Office of Optics and Precision Engineering, 2015, 23(9): 2497-2505.(in Chinese)
杨秉新. 空间相机用碳化硅(SiC)反射镜的研究[D]. 北京:北京空间机电研究所,2003.3.
YANG B X. Research of SiC Reflection Mirror for Space Camera[D].Beijing: Beijing Institute of Space Optics and Electricity,2003.3.(in Chinese)
张峰,徐领娣,范镝,等. 表面改性非球面碳化硅反射镜的加工[D].长春:长春光机所,2008.12.
ZHANG F,XU L D,FAN D,et al. Fabrication of Surface Modification Aspheric SiC Mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2008.12.(in Chinese)
罗霄,张学军. 采用平转动应力盘技术加工超大口径非球面的研究[D].长春:长春光机所,2011.5.
LUO X, ZHANG X J. Fabrication of Large Aspherics Using Stressed Lap with Orbital Tool Motion [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2011.5.(in Chinese)
邓伟杰,郑立功,史亚莉,等. 离轴非球面数控抛光路径的自适应规划[D].长春:长春光机所,2009.1.
DENG W J, ZHENG L G, SHI Y L, et al. Adaptive programming algorithm for generating polishing tool-path in computer controlled optical surfacing[D]. Changchun: Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Sciences,2009.1. (in Chinese)
刘振宇,张学军. 大口径非球面反射镜组合加工技术驻留时间算法研究[D].长春:长春光机所,2013.5.
LIU ZH Y, ZHANG X J. Dwell Time Algorithm of Multi-mode Technique for Fabrication of Large Aspherics [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2013.5.(in Chinese)
孙小苑,李大琪,陈勇,鲁卫国. 光学镜片平面行星式研磨加工关键技术研究[J]. 应用光学, 2014, 35(4): 681-685
SUN X Y, LI D Q, CHEN Y, et al. Key technologies of flat planetary lapping of optical lens[J]. Journal of Applied Optics, 2014, 35(4): 681-685
尚文锦.计算机控制确定性研抛的建模与仿真[D]. 长沙:国防科技大学机电工程与自动化学院,2005.
SHANG W J. Model Building and Simulation of Computer Control Deterministic Grinding and Polishing [D]. Changsha: National University of Defense Technology, 2005.
LIN B, LI L K, CAO ZH CH, et al. Modeling of pad surface topography and material removal characteristics for computer-controlled optical surfacing process[J]. Journal of Materials Processing Tech.,2018.
WAN S L, ZHANG X CH,ZHANG H, et al. Modeling and analysis of sub-aperture tool influence functions for polishing curved surfaces[J]. Precision Engineering,2018,51.
王权陡, 余景池, 张峰, 等. 数控抛光中不同运动方式下小抛光盘抛光特性之比较[J]. 光学 精密工程, 1999, 7(5): 73-79.
WANG Q D, YU J CH, ZHANG F. Polishing performance comparison of small polishing pad worked in different motion model in computer controlled optical polishing[J]. Editorial Office of Optics and Precision Engineering, 1999, 7(5): 73-79.
王旭,张学军,徐领娣,等. 固着磨料加工碳化硅反射镜的实验[D].长春:长春光机所,2009.4.
WANG X, ZHANG X J, XU L D, et al. Experiment of Grinding SiC Mirror with Fixed Abrasive[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2009.4.(in Chinese)
宋驰,张学军.采用非牛顿流体磨盘技术加工超大口径非球面的研究[D].长春:长春光机所,2017.5.
SONG CH, ZHANG X J, Fabrication of Large Aspherics Using Non-Newtonian Fluid Polishing Tool [D].Chang chun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,2017.5.(in Chinese)
李圣怡,戴一帆.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011.8.
LI SH Y, DAI Y F. New Technology for Manufacturing and Measurement of large and Middle-scale aspheric surfaces[M]. Beijing: National Defense Industry Press, 2011.8. (in Chinese)
[德]瓦伦丁 L. 波波夫. 接触力学与摩擦学的原理及应用[M].李强,雒建斌译.北京:清华大学出版社,2011:10
[Germany]PopovValentin L. Contact Mechanics and Friction Physical Principles and Applications[M].LI Q, LUO J B. Peking: Tsinghua University Press, 2011:10. (in Chinese)
0
浏览量
135
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构