1.北方民族大学 计算机科学与工程学院,银川 宁夏 750021
2.北方民族大学 图像图形智能处理国家民委重点实验室,银川 宁夏 750021
3.宁夏智能信息与大数据处理重点实验室,银川 宁夏 750021
4.宁夏医科大学 理学院,银川 宁夏 750004
5.宁夏医科大学总医院骨科,银川 宁夏 75004
[ "周 涛(1977-),男,宁夏同心人。博士,教授,2010年于西北工业大学获得博士学位,主要从事医学图像分析处理、深度学习、模式识别等方面的研究。E-mail:zhoutaonxmu@126.com" ]
[ "霍兵强(1994-),男,河北石家庄人。北方民族大学计算机学院研究生,主要从事智能医学影像图像处理,深度学习等方面的研究。E-mail:2916656832@qq.com" ]
扫 描 看 全 文
周涛, 霍兵强, 陆惠玲, 等. 融合多尺度图像的密集神经网络肺部肿瘤识别算法[J]. 光学精密工程, 2021,29(7):1695-1708.
Tao ZHOU, Bing-qiang HUO, Hui-ling LU, et al. Lung tumor image recognition algorithm with densenet fusion multi-scale images[J]. Optics and Precision Engineering, 2021,29(7):1695-1708.
周涛, 霍兵强, 陆惠玲, 等. 融合多尺度图像的密集神经网络肺部肿瘤识别算法[J]. 光学精密工程, 2021,29(7):1695-1708. DOI: 10.37188/OPE.20212907.1695.
Tao ZHOU, Bing-qiang HUO, Hui-ling LU, et al. Lung tumor image recognition algorithm with densenet fusion multi-scale images[J]. Optics and Precision Engineering, 2021,29(7):1695-1708. DOI: 10.37188/OPE.20212907.1695.
针对CT模态医学图像采用卷积神经网络训练时的特征提取不充分、特征维度较高等问题,本文提出了基于融合多尺度图像的非负稀疏协同表示分类的密集神经网络肺部肿瘤(Multi Scale DenseNet-NSCR)的识别方法。第一,使用迁移学习将预训练密集神经网络模型初始化参数;第二,将肺部图像预处理,提取多尺度病灶ROI区域;第三,采用多尺度CT图像训练密集神经网络,提取全连接层的特征向量;第四,针对融合特征维度较高问题,采用非负稀疏协同表示分类器(NSCR)对特征向量进行表示,求解系数矩阵;第五,利用残差相似度进行分类。最后,采用AlexNet,DenseNetNet-201模型及三种分类算法(SVM、SRC、NSCR)两两组合模型进行对比试验,实验结果表明,Multiscale-DenseNet-NSCR分类效果优于其它模型,且特异性和灵敏度等各项评价指标也较高,该方法具有较好的鲁棒性和泛化能力。
To address the problem of inadequate feature extraction and high feature dimension when CT modal medical images are trained with convolutional neural networks, this paper proposes a method for lung tumor identification using Multi-scale DenseNet-NSCR based on non-negative sparse collaborative representation classification by fusing multi-scale images. First, the parameters of the pre-trained dense neural network model are initialized using migration learning; the lung images are then pre-processed to extract multi-scale lesion ROI. Subsequently, the DenseNet is trained using a multi-scale CT dataset to extract feature vectors at the full connection layer. To address the problem of the high dimensionality of the fused features, a non-negative, sparse, and collaborative representation (NSCR) classifier is used to represent the feature vector and solve the coefficient matrix; the residual similarity is then used for classification. Finally, a comparison test is conducted with the AlexNet, DenseNetNetNet-201 model, and a combination model of three classification algorithms (SVM, SRC, NSCR). The experimental results show that Multiscale-DenseNet-NSCR classification is better than other models; all evaluation indexes such as specificity and sensitivity are higher, and the method has better robustness and generalization ability.
密集神经网络多尺度医学图像迁移学习NSCR算法
DenseNetmulti-scale medical imagetransfer learningnon-negative, sparse, collaborative representation classifier
杨健, 周涛, 郭丽芳, 等. 基于布谷鸟搜索和深度信念网络的肺部肿瘤图像识别算法[J]. 计算机应用, 2018, 38(11): 3225-3230.
YANG J, ZHOU T, GUO L F, et al. Lung tumor image recognition algorithm based on cuckoo search and deep belief network[J]. Journal of Computer Applications, 2018, 38(11): 3225-3230.(in Chinese)
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA: A Cancer Journal for Clinicians, 2019, 69(1): 7-34.
郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
ZHENG R S, SUN K X, ZHANG S W, et al. Report of cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019, 41(1): 19-28.(in Chinese)
吴磊, 吕国强, 赵晨, 等. 基于多尺度残差网络的CT图像超分辨率重建[J]. 液晶与显示, 2019, 34(10): 1006-1012.
WU L, LYU G Q, ZHAO CH, et al. CT image super-resolution reconstruction based on multi-scale residual network[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(10): 1006-1012.(in Chinese)
范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Opt. Precision Eng., 2020, 28(5): 1152-1164.(in Chinese)
田娟秀, 刘国才, 谷珊珊, 等. 医学图像分析深度学习方法研究与挑战[J]. 自动化学报, 2018, 44(3): 401-424.
TIAN J X, LIU G C, GU SH SH, et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44(3): 401-424.(in Chinese)
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016, Las Vegas, NV, USA. IEEE, 2016: 770-778.
HUANG G, LIU Z, MAATEN LVAN DER, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017, Honolulu, HI, USA. IEEE, 2017: 2261-2269.
LUO G T, LIU Z Q, WANG Q F, et al. Fully convolutional multi-scale ScSE-DenseNet for automatic pneumothorax segmentation in chest radiographs[C]. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 1821,2019, San Diego, CA, USA. IEEE, 2019: 1551-1555.
ZHANG Z, WU C, COLEMAN S, et al. DENSE-INception U-net for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 192: 105395.
刘一璟, 张旭斌, 张建伟, 等. DenseNet-centercrop: 一个用于肺结节分类的卷积网络[J]. 浙江大学学报(理学版), 2020, 47(1): 20-26.
LIU Y J, ZHANG X B, ZHANG J W, et al. DenseNet-centercrop: a novel convolutional network for lung nodule classification[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 20-26.(in Chinese)
马晓, 张番栋, 封举富. 基于深度学习特征的稀疏表示的人脸识别方法[J]. 智能系统学报, 2016, 11(3): 279-286.
MA X, ZHANG F D, FENG J F. Sparse representation via deep learning features based face recognition method[J]. CAAI Transactions on Intelligent Systems, 2016, 11(3): 279-286.(in Chinese)
XU J, AN W P, ZHANG L, et al. Sparse, collaborative, or nonnegative representation: Which helps pattern classification? [J]. Pattern Recognition, 2019, 88: 679-688.
赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612.
ZHAO C, ZHANG B M, YU D H, et al. Airborne LiDAR point cloud classification using transfer learning [J]. Opt. Precision Eng., 2019, 27(7): 1601-1612.(in Chinese)
JUN X,ZHOU X,WANG P.et al.Jointly non-negative,sparse and collaborative representation for image recognition [J]. Pattern Recognition.Preprint .2019
BOYD, PARIKHN., CHUE.,et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J].Found. Trends Mach. Learn., 2011,3:1-122
梁蒙蒙, 周涛, 夏勇, 等. 基于随机化融合和CNN的多模态肺部肿瘤图像识别[J]. 南京大学学报(自然科学), 2018, 54(4): 775-785.
LIANG M M, ZHOU T, XIA Y, et al. Multimodal lung tumor image recognition based on randomized fusion and CNN[J]. Journal of Nanjing University (Natural Science), 2018, 54(4): 775-785.(in Chinese)
0
浏览量
154
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构