浏览全部资源
扫码关注微信
重庆大学 光电技术与系统教育部重点实验室,重庆 400044
[ "黄 鸿(1980-),男,湖南新宁人,教授,博士生导师,2003,2005,2008年于重庆大学分别获得学士、硕士、博士学位,主要从事流形学习、模式识别、遥感影像智能化处理等方面的研究。E-mail: hhuang@cqu.edu.cn" ]
[ "张 臻(1997-),男,山西太原人,硕士研究生,2019年于中北大学获得学士学位,主要研究方向为图像处理和机器学习。E-mail: zhen_zhang@cqu.edu.cn" ]
收稿日期:2021-03-26,
修回日期:2021-04-16,
纸质出版日期:2021-08-15
移动端阅览
黄鸿,张臻,李政英.面向高光谱影像分类的深度流形重构置信网络[J].光学精密工程,2021,29(08):1985-1998.
HUANG Hong,ZHANG Zhen,LI Zheng-ying.Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J].Optics and Precision Engineering,2021,29(08):1985-1998.
黄鸿,张臻,李政英.面向高光谱影像分类的深度流形重构置信网络[J].光学精密工程,2021,29(08):1985-1998. DOI: 10.37188/OPE.20212908.1985.
HUANG Hong,ZHANG Zhen,LI Zheng-ying.Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J].Optics and Precision Engineering,2021,29(08):1985-1998. DOI: 10.37188/OPE.20212908.1985.
鉴于传统深度学习方法只提取了高光谱图像中的深度抽象信息,而未能充分揭示样本之间的局部几何结构关系,限制了分类性能的提升,本文提出了一种新的特征提取网络——深度流形重构置信网络。该网络首先通过深度置信网络提取深度抽象特征,为进一步增强抽象特征的鉴别能力,在图嵌入框架下通过样本数据的邻域点和各邻域的同类近邻重构点来构建类内图和类间图,并在低维空间中分离类间近邻点与其重构点的同时压缩类内近邻点和相应的重构点,实现提取深度鉴别特征,以改善不同类数据的可分性,进而提升地物分类精度。在KSC和MUUFL Gulfport高光谱数据集上的实验结果表明,本文算法的总体分类精度分别达到了94.71%和86.38%。相比较其他算法,本文算法有效提升了地物分类能力,更有利于实际应用。
Traditional deep learning methods extract only deep abstract information from hyperspectral images while failing to fully reveal the local geometric structure relationship between samples. This limits the improvement of classification performance. To address this problem, the present study proposes a new feature extraction network called a deep manifold reconstruction belief network. First, deep abstract features are extracted based on the deep belief network to enhance the identification ability of abstract features. Then, intraclass and interclass graphs are constructed based on the neighborhood points of sample data and reconstruction points of similar neighbors in each neighborhood under the graph embedding framework. Under this framework, intraclass neighbors and their reconstruction points are compressed. By contrast, interclass neighbors and their reconstruction points are separated in low-dimensional space to improve the separability of different types of data and the accuracy of feature classification. Deep discriminant feature extraction is then realized based on the reconstructed points. Experimental results on the KSC and MUUFL Gulfport hyperspectral datasets showed that the overall classification accuracy of the proposed algorithm was 94.71% and 86.38%, respectively. Compared with other algorithms, the proposed algorithm effectively improves the ability of land cover classification and is more conducive to practical applications.
张兵 . 高光谱图像处理与信息提取前沿 [J]. 遥感学报 , 2016 , 20 ( 5 ): 1062 - 1090 .
ZHANG B . Advancement of hyperspectral image processing and information extraction [J]. Journal of Remote Sensing , 2016 , 20 ( 5 ): 1062 - 1090 . (in Chinese)
丁国绅 , 乔延利 , 易维宁 , 等 . 基于高光谱图像的改进SIFT特征提取与匹配 [J]. 光学 精密工程 , 2020 , 28 ( 4 ): 954 - 962 .
DING G SH , QIAO Y L , YI W N , et al . Improved SIFT feature extraction and matching technology based on hyperspectral image [J]. Opt. Precision Eng. , 2020 , 28 ( 4 ): 954 - 962 . (in Chinese)
DING G S , QIAO Y L , YI W N , et al .. Improved SIFT feature extraction and matching technology based on hyperspectral image [J]. Optics and Precision Engineering , 2020 , 28 ( 04 ): 954 - 962 .
陈静 , 张静 . 改进高斯过程回归的高光谱空谱联合分类算法 [J]. 光学 精密工程 , 2019 , 27 ( 7 ): 1649 - 1660 .
CHEN J , ZHANG J . Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression [J]. Opt. Precision Eng. , 2019 , 27 ( 7 ): 1649 - 1660 . (in Chinese)
武复宇 , 王雪 , 丁建伟 , 等 . 高光谱遥感影像多级联森林深度网络分类算法 [J]. 遥感学报 , 2020 , 24 ( 4 ): 439 - 453 .
WU F Y , WANG X , DING J W , et al . Improved cascade forest deep learning model for hyperspectral imagery classification [J]. Journal of Remote Sensing , 2020 , 24 ( 4 ): 439 - 453 . (in Chinese)
闫敬文 , 陈宏达 , 刘蕾 . 高光谱图像分类的研究进展 [J]. 光学 精密工程 , 2019 , 27 ( 3 ): 680 - 693 .
YAN J W , CHEN H D , LIU L . Overview of hyperspectral image classification [J]. Opt. Precision Eng. , 2019 , 27 ( 3 ): 680 - 693 . (in Chinese)
CAI Y M , LIU X B , CAI Z H . BS-nets: an end-to-end framework for band selection of hyperspectral image [J]. IEEE Transactions on Geoscience and Remote Sensing , 2020 , 58 ( 3 ): 1969 - 1984 .
HABERMANN M , FREMONT V , SHIGUEMORI E H . Supervised band selection in hyperspectral images using single-layer neural networks [J]. International Journal of Remote Sensing , 2019 , 40 ( 10 ): 3900 - 3926 .
LUO F L , DU B , ZHANG L P , et al . Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image [J]. IEEE Transactions on Cybernetics , 2019 , 49 ( 7 ): 2406 - 2419 .
BONIFAZI G , CAPOBIANCO G , SERRANTI S . Asbestos containing materials detection and classification by the use of hyperspectral imaging [J]. Journal of Hazardous Materials , 2018 , 344 : 981 - 993 .
WANG H , FAN Y Y , FANG B F , et al . Generalized linear discriminant analysis based on euclidean norm for gait recognition [J]. International Journal of Machine Learning and Cybernetics , 2018 , 9 ( 4 ): 569 - 576 .
DENG Y J , LI H C , PAN L , et al . Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters , 2018 , 15 ( 2 ): 277 - 281 .
LU G F , JIN Z , ZOU J . Face recognition using discriminant sparsity neighborhood preserving embedding [J]. Knowledge-Based Systems , 2012 , 31 : 119 - 127 .
XU D , YAN S C , TAO D C , et al . Marginal fisher analysis and its variants for human gait recognition and content- based image retrieval [J]. IEEE Transactions on Image Processing , 2007 , 16 ( 11 ): 2811 - 2821 .
LUO F L , HUANG H , DUAN Y L , et al . Local geometric structure feature for dimensionality reduction of hyperspectral imagery [J]. Remote Sensing , 2017 , 9 ( 8 ): 790 .
DAI X A , CHENG J Y , GAO Y , et al . Deep belief network for feature extraction of urban artificial targets [J]. Mathematical Problems in Engineering , 2020 , 2020 : 1 - 13 .
LI Z Y , HUANG H , DUAN Y L , et al . DLPNet: a deep manifold network for feature extraction of hyperspectral imagery [J]. Neural Networks , 2020 , 129 : 7 - 18 .
张号逵 , 李映 , 姜晔楠 . 深度学习在高光谱图像分类领域的研究现状与展望 [J]. 自动化学报 , 2018 , 44 ( 6 ): 961 - 977 .
ZHANG H K , LI Y , JIANG Y N . Deep learning for hyperspectral imagery classification: the state of the art and prospects [J]. Acta Automatica Sinica , 2018 , 44 ( 6 ): 961 - 977 . (in Chinese)
RATLE F , CAMPS-VALLS G , WESTON J . Semisupervised neural networks for efficient hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing , 2010 , 48 ( 5 ): 2271 - 2282 .
CHEN Y S , LIN Z H , ZHAO X , et al . Deep learning-based classification of hyperspectral data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2014 , 7 ( 6 ): 2094 - 2107 .
LI Z Y , HUANG H , LI Y , et al . M3DNet: a manifold-based discriminant feature learning network for hyperspectral imagery [J]. Expert Systems With Applications , 2020 , 144 : 113089 .
ZHOU X C , LIU N , TANG F , et al . A deep manifold learning approach for spatial-spectral classification with limited labeled training samples [J]. Neurocomputing , 2019 , 331 : 138 - 149 .
张绪冰 , 王贤敏 , 王凯 , 等 . 基于深度置信网络的CRISM影像火星表面矿物识别方法 [J]. 地质科技通报 , 2020 , 39 ( 4 ): 189 - 200 .
ZHANG X B , WANG X M , WANG K , et al . Recognition of the Martian minerals based on the deep belief networks method: Application in the CRISM images [J]. Bulletin of Geological Science and Technology , 2020 , 39 ( 4 ): 189 - 200 . (in Chinese)
GADER P , ZARE A , CLOSE R , et al . “ MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set ,” University of Florida , Gainesville, FL, Tech. Rep. REP- 2013 -570, Oct. 2013.
DIAKITE A , GUI J S , FU X P . Hyperspectral image classification using 3D 2D CNN [J]. IET Image Processing , 2021 , 15 ( 5 ): 1083 - 1092 .
0
浏览量
1607
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构