浏览全部资源
扫码关注微信
1.中国科学技术大学,安徽 合肥 230026
2.中国科学院 苏州生物医学工程技术研究所 国科学院生物医学检验技术重点实验室,江苏 苏州 215163
3.苏州大学 电子信息学院,江苏 苏州 215006
4.复旦大学 儿科医院,上海 201102
5.季华实验室,广东 佛山 528200
[ "罗媛媛(1994-),女,河南信阳人,2018年于郑州大学获得学士学位,2018年攻读中国科学技术大学硕士研究生,主要从事实时数字PCR相关研究。E-mail:yyluo@mail.ustc.edu.cn罗媛媛(1994-),女,河南信阳人,2018年于郑州大学获得学士学位,2018年攻读中国科学技术大学硕士研究生,主要从事实时数字PCR相关研究。E-mail:yyluo@mail.ustc.edu.cn" ]
[ "周连群(1981-),男,山东金乡人,研究员,博士生导师,2010年获法国Université de Franche-Comté 大学科学工程专业博士学位和中科院研究生院工学博士学位,主要研究方向:微纳生物传感器及系统。E-mail:zhoulq@sibet.ac.cn" ]
[ "郭 振(1984-),男,宁夏隆德人,研究员,博士生导师,2011年获得中法双博士学位,主要从事微纳材料加工、制备及传感芯片研发。E-mail:guozhen@sibet.ac.cn" ]
收稿日期:2021-03-02,
修回日期:2021-04-09,
纸质出版日期:2021-09-15
移动端阅览
罗媛媛,姚佳,李东书等.实时数字PCR扩增曲线的分类[J].光学精密工程,2021,29(09):2178-2188.
LUO Yuan-yuan,YAO Jia,LI Dong-shu,et al.Classification of real-time digital PCR amplification curves[J].Optics and Precision Engineering,2021,29(09):2178-2188.
罗媛媛,姚佳,李东书等.实时数字PCR扩增曲线的分类[J].光学精密工程,2021,29(09):2178-2188. DOI: 10.37188/OPE.20212909.2178.
LUO Yuan-yuan,YAO Jia,LI Dong-shu,et al.Classification of real-time digital PCR amplification curves[J].Optics and Precision Engineering,2021,29(09):2178-2188. DOI: 10.37188/OPE.20212909.2178.
传统的数字PCR检测仅针对扩增终点的核酸样本执行终点式的荧光分析,依据反应后的荧光图像进行阴阳性统计及样本浓度计算,分析结果极易受假阳性及非特异性扩增影响。本文提出了一种基于过程的实时微孔式数字PCR芯片阴阳性分析方法,从时间维度对数字PCR结果进行定量分析,提高数字PCR检测的准确性。设计支持实时数字PCR分析的硬件系统并与终点式数字PCR仪进行对比,验证系统性能。在此系统上检测不同浓度的人类Ⅳ型疱疹病毒样本,获取实时扩增曲线,采用支持向量机算法对扩增曲线的特征进行学习并应用于检测曲线分类。实验结果表明,所设计的实时数字PCR系统与终点式数字PCR仪扩增结果具有高度一致性。本文所述的基于支持向量机的分类算法对扩增曲线的分类准确率达到98%以上,能准确识别假阳性及非特异性扩增微孔。相比于传统阈值分割法,本方法对阳性点识别的平均准确率提高了17.60%,并且目标模板拷贝数越低,效果越明显。与传统的终点式数字PCR相比,本文提出的基于实时数字PCR系统的数据分析方法具有准确性更高的优势,尤其在低拷贝数检测下可以获取更为精确的定量结果。
Conventional digital PCR detection only carries out end-point fluorescence analysis for nucleic acid samples after amplification. Based on fluorescence images obtained after reactions are completed, negative and positive statistics and sample concentrations are calculated. Analysis results are easily affected by false-positives and non-specific amplification. In this paper, a real-time high-throughput digital PCR chip analysis method based on process tracking has been proposed, to quantitatively analyze digital PCR results incorporating the dimension of time, thereby improving the accuracy of digital PCR detection. A system supporting real-time digital PCR analysis was designed and compared with an end-point digital PCR instrument to verify system performance. Using this system, different concentrations of Epstein-Barr virus were detected, and real-time amplification curves were obtained. Support Vector Machine algorithms were used to learn amplification curve characteristics, and applied to classify the detection curves. The amplification results of the designed real-time digital PCR system were highly consistent with that obtained by the end-point digital PCR. The classification algorithm based on Support Vector Machine can achieve more than 98% amplification curve classification accuracy and accurately identify false-positives and non-specific amplification micro-wells. Compared with the traditional threshold segmentation method, the average accuracy of this method for positive recognition is increased by 17.60%. The lower the copy number of the target template, the more obvious this effect is. Compared with traditional end-point digital PCR, data analysis based on the real-time digital PCR system proposed in this paper offers the advantage of higher accuracy. Quantitative result accuracy is especially improved in cases of low copy number detection.
JONES M , WILLIAMS J , GÄRTNER K , et al . Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’ [J]. Journal of Virological Methods , 2014 , 202 : 46 - 53 . doi: 10.1016/j.jviromet.2014.02.020 http://dx.doi.org/10.1016/j.jviromet.2014.02.020
JIANG Y F , WANG H F , HAO S J , et al . Digital PCR is a sensitive new technique for SARS-CoV-2 detection in clinical applications [J]. Clinica Chimica Acta , 2020 , 511 : 346 - 351 . doi: 10.1016/j.cca.2020.10.032 http://dx.doi.org/10.1016/j.cca.2020.10.032
DONG L H , ZHOU J B , NIU C Y , et al . Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR [J]. Talanta , 2021 , 224 : 121726 . doi: 10.1016/j.talanta.2020.121726 http://dx.doi.org/10.1016/j.talanta.2020.121726
XU L , QU H J , ALONSO D G , et al . Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples [J]. Biosensors and Bioelectronics , 2021 , 175 : 112908 . doi: 10.1016/j.bios.2020.112908 http://dx.doi.org/10.1016/j.bios.2020.112908
DEZAN M R , PERON A C , OLIVEIRA T G M , et al . Using droplet digital PCR to screen for rare blood donors: Proof of principle [J]. Transfusion and Apheresis Science , 2020 , 59 ( 6 ): 102882 . doi: 10.1016/j.transci.2020.102882 http://dx.doi.org/10.1016/j.transci.2020.102882
CAO L , CUI X Y , HU J , et al . Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications [J]. Biosensors and Bioelectronics , 2017 , 90 : 459 - 474 . doi: 10.1016/j.bios.2016.09.082 http://dx.doi.org/10.1016/j.bios.2016.09.082
MAREMONTI E , BREDE D A , OLSEN A K , et al . Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: droplet digital PCR analysis [J]. Genetic Toxicology and Environmental Mutagenesis , 2020 , 858/ 859 / 860 : 503277 . doi: 10.1016/j.mrgentox.2020.503277 http://dx.doi.org/10.1016/j.mrgentox.2020.503277
SALMAN A , CARNEY H , BATESON S , et al . Shunting microfluidic PCR device for rapid bacterial detection [J]. Talanta , 2020 , 207 : 120303 . doi: 10.1016/j.talanta.2019.120303 http://dx.doi.org/10.1016/j.talanta.2019.120303
MAO X D , LIU C , TONG H , et al . Principles of digital PCR and its applications in current obstetrical and gynecological diseases [J]. American Journal of Translational Research , 2019 , 11 ( 12 ): 7209 - 7222 .
O’KEEFE C M , KAUSHIK A M , WANG T H . Highly efficient real-time droplet analysis platform for high-throughput interrogation of DNA sequences by melt [J]. Analytical Chemistry , 2019 , 91 ( 17 ): 11275 - 11282 . doi: 10.1021/acs.analchem.9b02346 http://dx.doi.org/10.1021/acs.analchem.9b02346
TELLINGHUISEN J . dPCR vs. qPCR: The role of Poisson statistics at low concentrations [J]. Analytical Biochemistry , 2020 , 611 : 113946 . doi: 10.1016/j.ab.2020.113946 http://dx.doi.org/10.1016/j.ab.2020.113946
HUGGETT J F , COWEN S , FOY C A . Considerations for digital PCR as an accurate molecular diagnostic tool [J]. Clinical Chemistry , 2015 , 61 ( 1 ): 79 - 88 . doi: 10.1373/clinchem.2014.221366 http://dx.doi.org/10.1373/clinchem.2014.221366
BO R , AWANO H , NISHIDA K , et al . False positive cases of elevated tetradecenoyl carnitine in newborn mass screening showed significant loss of body weight [J]. Molecular Genetics and Metabolism Reports , 2020 , 24 : 100634 . doi: 10.1016/j.ymgmr.2020.100634 http://dx.doi.org/10.1016/j.ymgmr.2020.100634
HUDECOVA I . Digital PCR analysis of circulating nucleic acids [J]. Clinical Biochemistry , 2015 , 48 ( 15 ): 948 - 956 . doi: 10.1016/j.clinbiochem.2015.03.015 http://dx.doi.org/10.1016/j.clinbiochem.2015.03.015
JACOBS B K M , GOETGHEBEUR E , VANDESOMPELE J , et al . Model-based classification for digital PCR: your umbrella for rain [J]. Analytical Chemistry , 2017 , 89 ( 8 ): 4461 - 4467 . doi: 10.1021/acs.analchem.6b04208 http://dx.doi.org/10.1021/acs.analchem.6b04208
刘丽 , 孙刘杰 , 王文举 . 基于SVM的高通量dPCR基因芯片荧光图像分类研究 [J]. 包装工程 , 2020 , 41 ( 19 ): 223 - 229 .
LIU L , SUN L J , WANG W J . Classification of fluorescent images in high-throughput dPCR gene chips based on SVM [J]. Packaging Engineering , 2020 , 41 ( 19 ): 223 - 229 . (in Chinese)
DREO T , PIRC M , RAMŠAK Ž , et al . Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot [J]. Analytical and Bioanalytical Chemistry , 2014 , 406 ( 26 ): 6513 - 6528 . doi: 10.1007/s00216-014-8084-1 http://dx.doi.org/10.1007/s00216-014-8084-1
苟彤 . 基于智能手机的手持式数字PCR系统开发及其应用研究 [D]. 杭州 : 浙江大学 , 2019 . doi: 10.1134/s0514749219040244 http://dx.doi.org/10.1134/s0514749219040244
GOU T, Development of Smartphone-based Mobile Digital PCR System and Its Application [D]. Hangzhou : Zhejiang University , 2019 . (in Chinese) . doi: 10.1134/s0514749219040244 http://dx.doi.org/10.1134/s0514749219040244
BAKER M . Digital PCR hits its stride [J]. Nature Methods , 2012 , 9 ( 6 ): 541 - 544 . doi: 10.1038/nmeth.2027 http://dx.doi.org/10.1038/nmeth.2027
ARTYUHOV A S , DASHINIMAEV E B , MESCHERYAKOVA N V , et al . Detection of small numbers of iPSCs in different heterogeneous cell mixtures with highly sensitive droplet digital PCR [J]. Molecular Biology Reports , 2019 , 46 ( 6 ): 6675 - 6683 . doi: 10.1007/s11033-019-05100-2 http://dx.doi.org/10.1007/s11033-019-05100-2
朱文艳 , 周连群 , 张芷齐 , 等 . 微孔式数字PCR荧光芯片的自动对焦 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 2065 - 2075 . doi: 10.37188/OPE.20202809.2065 http://dx.doi.org/10.37188/OPE.20202809.2065
ZHU W Y , ZHOU L Q , ZHANG ZH Q , et al . Autofocus of microarray digital PCR fluorescent chip [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2065 - 2075 . (in Chinese) . doi: 10.37188/OPE.20202809.2065 http://dx.doi.org/10.37188/OPE.20202809.2065
邱亚军 , 李金泽 , 李传宇 , 等 . 高通量数字化毛细管微阵列芯片 [J]. 光学 精密工程 , 2019 , 27 ( 6 ): 1237 - 1244 . doi: 10.3788/ope.20192706.1237 http://dx.doi.org/10.3788/ope.20192706.1237
QIU Y J , LI J Z , LI CH Y , et al . High-throughput digital capillary microarray [J]. Opt. Precision Eng. , 2019 , 27 ( 6 ): 1237 - 1244 . (in Chinese) . doi: 10.3788/ope.20192706.1237 http://dx.doi.org/10.3788/ope.20192706.1237
KLIPPENSTEIN V , MONY L , PAOLETTI P . Probing ion channel structure and function using light-sensitive amino acids [J]. Trends in Biochemical Sciences , 2018 , 43 ( 6 ): 436 - 451 . doi: 10.1016/j.tibs.2018.02.012 http://dx.doi.org/10.1016/j.tibs.2018.02.012
李树力 , 李金泽 , 郭振 , 等 . 蜂窝状数字PCR微阵列荧光图像的信息提取 [J]. 光学 精密工程 , 2020 , 28 ( 12 ): 2745 - 2755 . doi: 10.37188/OPE.20202812.2745 http://dx.doi.org/10.37188/OPE.20202812.2745
LI SH L , LI J Z , GUO ZH , et al . Extraction of fluorescent image information from cellular digital PCR microarray [J]. Opt. Precision Eng. , 2020 , 28 ( 12 ): 2745 - 2755 . (in Chinese) . doi: 10.37188/OPE.20202812.2745 http://dx.doi.org/10.37188/OPE.20202812.2745
SANZ H , VALIM C , VEGAS E , et al . SVM-RFE: selection and visualization of the most relevant features through non-linear kernels [J]. BMC Bioinformatics , 2018 , 19 ( 1 ): 1 - 18 . doi: 10.1186/s12859-018-2451-4 http://dx.doi.org/10.1186/s12859-018-2451-4
CHEN X , XU S Y , LI S M , et al . Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China [J]. Journal of Petroleum Science and Engineering , 2021 , 198 : 108247 . doi: 10.1016/j.petrol.2020.108247 http://dx.doi.org/10.1016/j.petrol.2020.108247
CHEN X , XU S Y , LI S M , et al . Identification of architectural elements based on SVM with PCA: a case study of sandy braided river reservoir in the Lamadian Oilfield, Songliao Basin, NE China [J]. Journal of Petroleum Science and Engineering , 2021 , 198 : 108247 . doi: 10.1016/j.petrol.2020.108247 http://dx.doi.org/10.1016/j.petrol.2020.108247
XU B L , SHEN S F , SHEN F R , et al . Locally linear SVMs based on boundary anchor points encoding [J]. Neural Networks , 2019 , 117 : 274 - 284 . doi: 10.1016/j.neunet.2019.05.023 http://dx.doi.org/10.1016/j.neunet.2019.05.023
BRENNAN R L , PREDIGER D J . Coefficient kappa: some uses, misuses, and alternatives [J]. Educational and Psychological Measurement , 1981 , 41 ( 3 ): 687 - 699 . doi: 10.1177/001316448104100307 http://dx.doi.org/10.1177/001316448104100307
TRYPSTEEN W , VYNCK M , DE NEVE J , et al . ddpcRquant: threshold determination for single channel droplet digital PCR experiments [J]. Analytical and Bioanalytical Chemistry , 2015 , 407 ( 19 ): 5827 - 5834 . doi: 10.1007/s00216-015-8773-4 http://dx.doi.org/10.1007/s00216-015-8773-4
COCCARO N , TOTA G , ANELLI L , et al . Digital PCR: a reliable tool for analyzing and monitoring hematologic malignancies [J]. International Journal of Molecular Sciences , 2020 , 21 ( 9 ): 3141 . doi: 10.3390/ijms21093141 http://dx.doi.org/10.3390/ijms21093141
0
浏览量
878
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构