浏览全部资源
扫码关注微信
1.北京交通大学 信息科学研究所,北京 100044
2.现代信息科学与网络技术北京市重点实验室,北京 100044
[ "田曼伶(1998-),女,湖南湘西人,硕士生,2019年于北京语言大学获得学士学位,现为北京交通大学计算机与信息技术学院硕士生,研究方向为分布式光纤传感,深度学习和信号处理。E-mail: 19120309@bjtu.edu.cn" ]
[ "刘东辉(1996-),男,河北保定人,硕士生,2019年于河北科技大学获得学士学位,现为北京交通大学计算机与信息技术学院硕士生,研究方向为分布式光纤传感的信号处理,机器学习。E-mail: 19125140@bjtu.edu,cn刘东辉(1996-),男,河北保定人,硕士生,2019年于河北科技大学获得学士学位,现为北京交通大学计算机与信息技术学院硕士生,研究方向为分布式光纤传感的信号处理,机器学习。E-mail: 19125140@bjtu.edu,cn" ]
收稿日期:2021-03-30,
修回日期:2021-04-22,
纸质出版日期:2021-09-15
移动端阅览
田曼伶,刘东辉,曹晓敏等.相位敏感光时域反射仪的信号处理方法综述[J].光学精密工程,2021,29(09):2189-2209.
TIAN Man-ling,LIU Dong-hui,CAO Xiao-min,et al.Signal processing methods of phase sensitive optical time domain reflectometer:a review[J].Optics and Precision Engineering,2021,29(09):2189-2209.
田曼伶,刘东辉,曹晓敏等.相位敏感光时域反射仪的信号处理方法综述[J].光学精密工程,2021,29(09):2189-2209. DOI: 10.37188/OPE.20212909.2189.
TIAN Man-ling,LIU Dong-hui,CAO Xiao-min,et al.Signal processing methods of phase sensitive optical time domain reflectometer:a review[J].Optics and Precision Engineering,2021,29(09):2189-2209. DOI: 10.37188/OPE.20212909.2189.
相位敏感光时域反射仪由于具备监测范围广、灵敏度高等优点被广泛应用于周界安防等领域。近年来,研究者对其光学系统的改进使得传感距离更长、空间分辨率更高。但需要处理的数据量大大增加,且环境噪声以及扰动类型多样给分布式扰动传感系统的实际应用带来了挑战。本文总结了提高该系统信号信噪比、扰动识别率等性能指标的信号处理方法,包括降噪算法、特征提取算法、机器学习以及深度学习算法,尽可能地对比各种算法的优劣,并展望了未来该领域信号处理方法可能的发展方向。
Phase-sensitive optical time domain reflectometry is widely used in perimeter security and other fields because of its advantages of wide monitoring range and high sensitivity. In recent years, researchers have improved optical systems to increase sensing distance and spatial resolution, thus greatly increasing the amount of data that needs to be processed. In addition, strong environmental noise and diverse types of vibrations bring challenges to the practical application of distributed vibration sensing systems. This study summarizes the signal processing methods used to improve the signal-to-noise ratio and vibration recognition rate of the system, including noise reduction algorithms, feature extraction algorithms, machine learning, and deep learning algorithms; compares the advantages and disadvantages of different algorithms; and finally outlines the possible direction of signal processing methods in this field in the future.
JUAREZ J C , TAYLOR H F . Field test of a distributed fiber-optic intrusion sensor system for long perimeters [J]. Applied Optics , 2007 , 46 ( 11 ): 1968 - 1971 . doi: 10.1364/ao.46.001968 http://dx.doi.org/10.1364/ao.46.001968
QIN Z G , CHEN L , BAO X Y . Continuous wavelet transform for non-stationary vibration detection with phase-OTDR [C]. Proc SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors , 2012 , 8421 : 8421 A 0 . doi: 10.1117/12.975025 http://dx.doi.org/10.1117/12.975025
JUAREZ J C , MAIER E W , CHOI K N , et al . Distributed fiber-optic intrusion sensor system [J]. Journal of Lightwave Technology , 2005 , 23 ( 6 ): 2081 - 2087 . doi: 10.1109/jlt.2005.849924 http://dx.doi.org/10.1109/jlt.2005.849924
JUAREZ J C , TAYLOR H F . Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system [J]. Optics Letters , 2005 , 30 ( 24 ): 3284 - 3286 . doi: 10.1364/ol.30.003284 http://dx.doi.org/10.1364/ol.30.003284
QIN Z G , CHEN L , BAO X Y . Wavelet denoising method for improving detection performance of distributed vibration sensor [J]. IEEE Photonics Technology Letters , 2012 , 24 ( 7 ): 542 - 544 . doi: 10.1109/lpt.2011.2182643 http://dx.doi.org/10.1109/lpt.2011.2182643
CHOI K N , TAYLOR H F . Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry [J]. IEEE Photonics Technology Letters , 2003 , 15 ( 3 ): 386 - 388 . doi: 10.1109/lpt.2003.807905 http://dx.doi.org/10.1109/lpt.2003.807905
RAO Y J , LUO J , RAN Z L , et al . [C] . 2009 20th International Conference on Optical Fibre Sensors , Edinburgh UK , 2009 : p 75031 O. doi: 10.1117/12.835324 http://dx.doi.org/10.1117/12.835324
MARTINS H F , MARTÍN-LÓPEZ S , CORREDERA P , et al . Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over>100 km [J]. Journal of Lightwave Technology , 2014 , 32 ( 8 ): 1510 - 1518 . doi: 10.1109/jlt.2014.2308354 http://dx.doi.org/10.1109/jlt.2014.2308354
PENG F , WU H , JIA X H , et al . Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines [J]. Optics Express , 2014 , 22 ( 11 ): 13804 - 13810 . doi: 10.1364/oe.22.013804 http://dx.doi.org/10.1364/oe.22.013804
MARTINS H F , MARTIN-LOPEZ S , FILOGRANO M L , et al . Comparison of the use of first and second-order Raman amplification to assist a phase-sensitive optical time domain reflectometer in distributed vibration sensing over 125 km [C]. Proc SPIE 9157 , 2014 , 9157 : 91576K . doi: 10.1117/12.2059483 http://dx.doi.org/10.1117/12.2059483
LU Y L , ZHU T , CHEN L , et al . Distributed vibration sensor based on coherent detection of phase-OTDR [J]. Journal of Lightwave Technology , 2010 , 28 ( 22 ): 3243 - 3249 . doi: 10.1109/JLT.2010.2078798 http://dx.doi.org/10.1109/JLT.2010.2078798
WANG Z N , LI J , FAN M Q , et al . Phase-sensitive optical time-domain reflectometry with Brillouin amplification [J]. Optics Letters , 2014 , 39 ( 15 ): 4313 - 4316 . doi: 10.1364/ol.39.004313 http://dx.doi.org/10.1364/ol.39.004313
WANG Z N , ZENG J J , LI J , et al . Ultra-long phase-sensitive OTDR with hybrid distributed amplification [J]. Optics Letters , 2014 , 39 ( 20 ): 5866 - 5869 . doi: 10.1364/ol.39.005866 http://dx.doi.org/10.1364/ol.39.005866
PAN Z Q , LIANG K Z , YE Q , et al . Phase-sensitive OTDR system based on digital coherent detection [C]. 2011 Asia Communications and Photonics Conference and Exhibition (ACP) . 1316,2011 , Shanghai, China . IEEE , 2011 : 1 - 6 . doi: 10.1364/acp.2011.83110s http://dx.doi.org/10.1364/acp.2011.83110s
HE H J , SHAO L Y , LUO B , et al . Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing [J]. Optics Express , 2016 , 24 ( 5 ): 4842 - 4855 . doi: 10.1364/oe.24.004842 http://dx.doi.org/10.1364/oe.24.004842
HE Q , ZHU T , XIAO X H , et al . All fiber distributed vibration sensing using modulated time-difference pulses [J]. IEEE Photonics Technology Letters , 2013 , 25 ( 20 ): 1955 - 1957 . doi: 10.1109/lpt.2013.2276124 http://dx.doi.org/10.1109/lpt.2013.2276124
SHAN Y Y , DONG J Y , ZENG J , et al . A broadband distributed vibration sensing system assisted by a distributed feedback interferometer [J]. IEEE Photonics Journal , 2018 , 10 ( 1 ): 1 - 10 . doi: 10.1109/jphot.2017.2776919 http://dx.doi.org/10.1109/jphot.2017.2776919
ZHU T , HE Q , XIAO X H , et al . Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution [J]. Optics Express , 2013 , 21 ( 3 ): 2953 - 2963 . doi: 10.1364/oe.21.002953 http://dx.doi.org/10.1364/oe.21.002953
曲洪权 , 夏雨 , 毕福昆 . 一种基于改进型SVM算法的光纤入侵信号识别研究 [J]. 北方工业大学学报 , 2017 , 29 ( 2 ): 33 - 38 . doi: 10.3969/j.issn.1001-5477.2017.02.006 http://dx.doi.org/10.3969/j.issn.1001-5477.2017.02.006
QU H Q , XIA Y , BI F K . An improved SVM method to recognize harmful intrusion signal for optical fiber pre-warning system [J]. Journal of North China University of Technology , 2017 , 29 ( 2 ): 33 - 38 . (in Chinese) . doi: 10.3969/j.issn.1001-5477.2017.02.006 http://dx.doi.org/10.3969/j.issn.1001-5477.2017.02.006
WU H J , XIAO S K , LI X Y , et al . Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR) [J]. Journal of Lightwave Technology , 2015 , 33 ( 15 ): 3156 - 3162 . doi: 10.1109/jlt.2015.2421953 http://dx.doi.org/10.1109/jlt.2015.2421953
QIAN Y , WU H J , ZHANG W , et al . Feature extraction with WD and WPD in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring [C]. Asia Pacific Optical Sensors Conference . Shanghai. Washington, D.C. : OSA , 2016 : W4A.37 . doi: 10.1364/apos.2016.w4a.37 http://dx.doi.org/10.1364/apos.2016.w4a.37
TEJEDOR J , MACIAS-GUARASA J , MARTINS H , et al . A novel fiber optic based surveillance system for prevention of pipeline integrity threats [J]. Sensors , 2017 , 17 ( 2 ): 355 . doi: 10.3390/s17020355 http://dx.doi.org/10.3390/s17020355
徐铖晋 . 分布式光纤传感系统的信号处理技术研究 [D]. 杭州 : 浙江大学 , 2017 .
XU CH J . Research on Signal Processing Technology of Distributed Optical Fiber Sensing System [D]. Hangzhou : Zhejiang University , 2017 . (in Chinese)
张俊楠 , 娄淑琴 , 梁生 . 基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究 [J]. 红外与激光工程 , 2017 , 46 ( 4 ): 0422003 . doi: 10.3788/irla201746.0422003 http://dx.doi.org/10.3788/irla201746.0422003
ZHANG J N , LOU SH Q , LIANG SH . Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system [J]. Infrared and Laser Engineering , 2017 , 46 ( 4 ): 0422003 . (in Chinese) . doi: 10.3788/irla201746.0422003 http://dx.doi.org/10.3788/irla201746.0422003
付群健 . 分布式光纤振动传感系统模式识别方法研究 [D]. 长春 : 吉林大学 , 2019 . doi: 10.1117/12.2548132 http://dx.doi.org/10.1117/12.2548132
FU Q J . Research on Pattern Recognition Method of Distributed Optical Fiber Vibration Sensing System [D]. Changchun : Jilin University , 2019 . (in Chinese) . doi: 10.1117/12.2548132 http://dx.doi.org/10.1117/12.2548132
张伟 . 基于分布式光纤振动传感器的管道监测信号处理方法 [D]. 成都 : 电子科技大学 , 2017 .
ZHANG W . Methods of Pipeline Monitoring Signal Processing Based on Distributed Optical Fiber Vibration Sensor [D]. Chengdu : University of Electronic Science and Technology of China , 2017 . (in Chinese)
JIA H Z , LIANG S , LOU S Q , et al . A $k$ -nearest neighbor algorithm-based near category support vector machine method for event identification of phi-OTDR [J]. IEEE Sensors Journal , 2019 , 19 ( 10 ): 3683 - 3689 . doi: 10.1109/jsen.2019.2891750 http://dx.doi.org/10.1109/jsen.2019.2891750
姚媛媛 . 分布式光纤传感系统的振动信号识别研究 [D]. 北京 : 北京交通大学 , 2020 .
YAO Y Y . Research on Vibration Signal Recognition of Distributed Optical Fiber Sensing System [D]. Beijing : Beijing Jiaotong University , 2020 . (in Chinese)
SUN Q , FENG H , YAN X , et al . Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction [J]. Sensors (Basel, Switzerland) , 2015 , 15 ( 7 ): 15179 - 15197 . doi: 10.3390/s150715179 http://dx.doi.org/10.3390/s150715179
WANG Y , WANG P F , DING K , et al . Pattern recognition using relevant vector machine in optical fiber vibration sensing system [J]. IEEE Access , 2019 , 7 : 5886 - 5895 . doi: 10.1109/access.2018.2889699 http://dx.doi.org/10.1109/access.2018.2889699
XU C J , GUAN J J , BAO M , et al . Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR [J]. Optical Engineering , 2018 , 57 ( 1 ): 1 . doi: 10.1117/1.OE.57.1.016103 http://dx.doi.org/10.1117/1.OE.57.1.016103
JIANG F , LI H L , ZHANG Z H , et al . An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN [C]. Proc SPIE 10618 , 2018 , 1061 : 1061804 . doi: 10.1117/12.2286220 http://dx.doi.org/10.1117/12.2286220
SHI Y , WANG Y Y , ZHAO L , et al . An event recognition method for Φ-OTDR sensing system based on deep learning [J]. Sensors , 2019 , 19 ( 15 ): 3421 . doi: 10.3390/s19153421 http://dx.doi.org/10.3390/s19153421
CHEN J P , WU H J , LIU X R , et al . A real-time distributed deep learning approach for intelligent event recognition in long distance pipeline monitoring with DOFS [C]. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC) . 1820,2018 , Zhengzhou, China . IEEE , 2018 : 290 - 296 . doi: 10.1109/cyberc.2018.00059 http://dx.doi.org/10.1109/cyberc.2018.00059
吴俊 , 管鲁阳 , 鲍明 , 等 . 基于多尺度一维卷积神经网络的光纤振动事件识别 [J]. 光电工程 , 2019 , 46 ( 5 ): 79 - 86 .
WU J , GUAN L Y , BAO M , et al . Vibration events recognition of optical fiber based on multi-scale 1-D CNN [J]. Opto-Electronic Engineering , 2019 , 46 ( 5 ): 79 - 86 . (in Chinese)
于淼 . 基于双重同源外差相干检测的Φ-OTDR系统的研究及应用 [D]. 长春 : 吉林大学 , 2017 . doi: 10.1364/ao.56.004058 http://dx.doi.org/10.1364/ao.56.004058
YU M . Research and Application of Phase-sensitive Optical Time-domain Reflectometric System Based on Single-source Dual Heterodyne Detection Scheme [D]. Changchun : Jilin University , 2017 . (in Chinese) . doi: 10.1364/ao.56.004058 http://dx.doi.org/10.1364/ao.56.004058
XU C J , GUAN J J , BAO M , et al . Pattern recognition based on enhanced multifeature parameters for vibration events in φ-OTDR distributed optical fiber sensing system [J]. Microwave and Optical Technology Letters , 2017 , 59 ( 12 ): 3134 - 3141 . doi: 10.1002/mop.30886 http://dx.doi.org/10.1002/mop.30886
CHEN X , XU C J . Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system [J]. Microwave and Optical Technology Letters , 2020 , 62 ( 1 ): 168 - 175 . doi: 10.1002/mop.32025 http://dx.doi.org/10.1002/mop.32025
QIN Z G , CHEN L , BAO X Y . Wavelet denoising method for improving detection performance of distributed vibration sensor [J]. IEEE Photonics Technology Letters , 2012 , 24 ( 7 ): 542 - 544 . doi: 10.1109/lpt.2011.2182643 http://dx.doi.org/10.1109/lpt.2011.2182643
CHEN W , MA X H , MA Q L , et al . Denoising method of the Φ-OTDR system based on EMD-PCC [J]. IEEE Sensors Journal , 2021 , 21 ( 10 ): 12113 - 12118 .
QU S , CHANG J , CONG Z H , et al . Data compression and SNR enhancement with compressive sensing method in phase-sensitive OTDR [J]. Optics Communications , 2019 , 433 : 97 - 103 . doi: 10.1016/j.optcom.2018.09.064 http://dx.doi.org/10.1016/j.optcom.2018.09.064
ZHU T , XIAO X H , HE Q , et al . Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method [J]. Journal of Lightwave Technology , 2013 , 31 ( 17 ): 2851 - 2856 . doi: 10.1109/jlt.2013.2273553 http://dx.doi.org/10.1109/jlt.2013.2273553
WANG Y , JIN B Q , WANG Y C , et al . Real-time distributed vibration monitoring system using $\Phi$ -OTDR [J]. IEEE Sensors Journal , 2017 , 17 ( 5 ): 1333 - 1341 . doi: 10.1109/jsen.2016.2642221 http://dx.doi.org/10.1109/jsen.2016.2642221
HE H J , SHAO L Y , LI H C , et al . SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm [J]. IEEE Photonics Journal , 2017 , 9 ( 3 ): 1 - 10 . doi: 10.1109/jphot.2017.2700894 http://dx.doi.org/10.1109/jphot.2017.2700894
ÖLÇER İ , ÖNCÜ A . Adaptive temporal matched filtering for noise suppression in fiber optic distributed acoustic sensing [J]. Sensors , 2017 , 17 ( 6 ): 1288 . doi: 10.3390/s17061288 http://dx.doi.org/10.3390/s17061288
LIEHR S , BORCHARDT C , MÜNZENBERGER S . Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers [J]. Optics Express , 2020 , 28 ( 26 ): 39311 - 39325 . doi: 10.1364/oe.402789 http://dx.doi.org/10.1364/oe.402789
BOLL S . Suppression of acoustic noise in speech using spectral subtraction [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing , 1979 , 27 ( 2 ): 113 - 120 . doi: 10.1109/tassp.1979.1163209 http://dx.doi.org/10.1109/tassp.1979.1163209
TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory , 2007 , 53 ( 12 ): 4655 - 4666 . doi: 10.1109/tit.2007.909108 http://dx.doi.org/10.1109/tit.2007.909108
ROBERTS , G L . Machine Perception of Three-dimensional Solids [M]. 1965 .
ELAD M . On the origin of the bilateral filter and ways to improve it [J]. IEEE Transactions on Image Processing , 2002 , 11 ( 10 ): 1141 - 1151 . doi: 10.1109/tip.2002.801126 http://dx.doi.org/10.1109/tip.2002.801126
SOBEL I E . Camera Models and Machine Perception [D]. Stanford University , 1970 .
PREWITT . Object enhancement and extraction [J]. Picture Processing and Psychopictorics , 1971 . doi: 10.1016/0019-1035(71)90136-9 http://dx.doi.org/10.1016/0019-1035(71)90136-9
ZHU Q D , JING L Q , BI R S . Exploration and improvement of Ostu threshold segmentation algorithm [C]. 2010 8th World Congress on Intelligent Control and Automation . 79,2010 , Jinan , China . IEEE , 2010 : 6183 - 6188 . doi: 10.1109/wcica.2010.5554431 http://dx.doi.org/10.1109/wcica.2010.5554431
ZHANG M , GUNTURK B K . Multiresolution bilateral filtering for image denoising [J]. IEEE Transactions on Image Processing , 2008 , 17 ( 12 ): 2324 - 2333 . doi: 10.1109/tip.2008.2006658 http://dx.doi.org/10.1109/tip.2008.2006658
SHAO L Y , LIU S Q , BANDYOPADHYAY S , et al . Data-driven distributed optical vibration sensors: a review [J]. IEEE Sensors Journal , 2019 , 20 ( 12 ): 6224 - 6239 . doi: 10.1109/jsen.2019.2939486 http://dx.doi.org/10.1109/jsen.2019.2939486
TEJEDOR J , MACIAS-GUARASA J , MARTINS H F , et al . Towards detection of pipeline integrity threats using a smart fiber optic surveillance system: PIT-STOP project blind field test results [C]. 25th International Conference on Optical Fiber Sensors . Jeju, Korea, Republic of. SPIE , 2017 . doi: 10.1117/12.2263357 http://dx.doi.org/10.1117/12.2263357
JIA H Z , LOU S Q , LIANG S , et al . Event identification by F-ELM model for phi-OTDR fiber-optic distributed disturbance sensor [J]. IEEE Sensors Journal , 2020 , 20 ( 3 ): 1297 - 1305 . doi: 10.1109/jsen.2019.2946289 http://dx.doi.org/10.1109/jsen.2019.2946289
WANG X , LIU Y , LIANG S , et al . Event identification based on random forest classifier for Φ-OTDR fiber-optic distributed disturbance sensor [J]. Infrared Physics & Technology , 2019 , 97 : 319 - 325 . doi: 10.1016/j.infrared.2019.01.003 http://dx.doi.org/10.1016/j.infrared.2019.01.003
WANG J , HU Y Z , SHAO Y C . The digging signal identification by the random forest algorithm in the phase-OTDR technology [J]. IOP Conference Series: Materials Science and Engineering , 2018 , 394 : 032005 . doi: 10.1088/1757-899x/394/3/032005 http://dx.doi.org/10.1088/1757-899x/394/3/032005
ZHANG M J , LI Y C , CHEN J , et al . Event detection method comparison for distributed acoustic sensors using φ-OTDR [J]. Optical Fiber Technology , 2019 , 52 : 101980 . doi: 10.1016/j.yofte.2019.101980 http://dx.doi.org/10.1016/j.yofte.2019.101980
WANG Z D , LOU S Q , LIANG S , et al . Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR [J]. IEEE Access , 2020 , 8 : 63551 - 63558 . doi: 10.1109/access.2020.2984022 http://dx.doi.org/10.1109/access.2020.2984022
CREMERS D , ROUSSON M , DERICHE R . A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape [J]. International Journal of Computer Vision , 2007 , 72 ( 2 ): 195 - 215 . doi: 10.1007/s11263-006-8711-1 http://dx.doi.org/10.1007/s11263-006-8711-1
SANKUR B . Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging , 2004 , 13 ( 1 ): 146 - 168 . doi: 10.1117/1.1631315 http://dx.doi.org/10.1117/1.1631315
BIANCO A , BOENTE G , PIRES A M , et al . Robust discrimination under a hierarchy on the scatter matrices [J]. Journal of Multivariate Analysis , 2008 , 99 ( 6 ): 1332 - 1357 . doi: 10.1016/j.jmva.2007.08.008 http://dx.doi.org/10.1016/j.jmva.2007.08.008
JIANG L H , LIU X M , YANG R Y . Application of the HHT method to the airport fiber fence warning [C]. 2011 International Conference on Electronics , Communications and Control (ICECC) . 911,2011 , Ningbo, China . IEEE , 2011 : 1337 - 1340 . doi: 10.1109/icecc.2011.6066272 http://dx.doi.org/10.1109/icecc.2011.6066272
TIPPING M E . Sparse Bayesian learning and relevance vector machine [J]. Journal of Machine Learning Research , 2001 , 1 : 211 - 244 .
赵发林 , 张涛 , 李康 . 基于遗传算法的随机森林模型在特征基因筛选中的应用 [J]. 中国卫生统计 , 2016 , 33 ( 4 ): 559 - 562, 566 .
ZHAO F L , ZHANG T , LI K . An optimized random forest based on genetic algorithm and its application to feature selection for gene data [J]. Chinese Journal of Health Statistics , 2016 , 33 ( 4 ): 559 - 562, 566 . (in Chinese)
FRIEDMAN J H . Greedy function approximation: a gradient boosting machine [J]. The Annals of Statistics , 2001 , 29 ( 5 ): 1189 - 1232 . doi: 10.1214/aos/1013203451 http://dx.doi.org/10.1214/aos/1013203451
LECUN Y , BOTTOU L , BENGIO Y , et al . Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE , 1998 , 86 ( 11 ): 2278 - 2324 . doi: 10.1109/5.726791 http://dx.doi.org/10.1109/5.726791
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM , 2017 , 60 ( 6 ): 84 - 90 . doi: 10.1145/3065386 http://dx.doi.org/10.1145/3065386
SZEGEDY C , LIU W , JIA Y Q , et al . Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 712,2015 , Boston, MA, USA . IEEE , 2015 : 1 - 9 . doi: 10.1109/cvpr.2015.7298594 http://dx.doi.org/10.1109/cvpr.2015.7298594
SIMONYAN K , ZISSERMAN A . Very Deep Convolutional Networks for Large-scale Image Recongnition [J]. Computer Science , 2014 . doi: 10.1007/978-3-319-16865-4_35 http://dx.doi.org/10.1007/978-3-319-16865-4_35
LI H L , ZHANG Z H , JIANG F , et al . An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN [C]. 2017 International Conference on Optical Instruments and Technology : Advanced Optical Sensors and Applications. October 28 - 30 , 2017 . Beijing, China. SPIE , 2018 : 1061804 . doi: 10.1117/12.2286220 http://dx.doi.org/10.1117/12.2286220
SHI Y , WANG Y Y , WANG L Y , et al . Multi-event classification for Φ-OTDR distributed optical fiber sensing system using deep learning and support vector machine [J]. Optik , 2020 , 221 : 165373 . doi: 10.1016/j.ijleo.2020.165373 http://dx.doi.org/10.1016/j.ijleo.2020.165373
SUN Q , LI Q J , CHEN L , et al . Pattern recognition based on pulse scanning imaging and convolutional neural network for vibrational events in Φ-OTDR [J]. Optik , 2020 , 219 : 165205 . doi: 10.1016/j.ijleo.2020.165205 http://dx.doi.org/10.1016/j.ijleo.2020.165205
RUAN S S , MO J Q , XU L , et al . Use AF-CNN for end-to-end fiber vibration signal recognition [J]. IEEE Access , 2021 , 9 : 6713 - 6720 . doi: 10.1109/access.2021.3049159 http://dx.doi.org/10.1109/access.2021.3049159
LYU C G , HUO Z Q , LIU Y G , et al . Robust intrusion events recognition methodology for distributed optical fiber sensing perimeter security system [J]. IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 9 . doi: 10.1109/tim.2020.3048521 http://dx.doi.org/10.1109/tim.2020.3048521
GIRAUD-CARRIER C , VILALTA R , BRAZDIL P . Introduction to the special issue on meta-learning [J]. Machine Learning , 2004 , 54 ( 3 ): 187 - 193 . doi: 10.1023/b:mach.0000015878.60765.42 http://dx.doi.org/10.1023/b:mach.0000015878.60765.42
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J]. Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 . doi: 10.1162/neco.1997.9.8.1735 http://dx.doi.org/10.1162/neco.1997.9.8.1735
BAI Y , XING J C , XIE F , et al . Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning [J]. Optical Fiber Technology , 2019 , 53 : 102060 . doi: 10.1016/j.yofte.2019.102060 http://dx.doi.org/10.1016/j.yofte.2019.102060
LI Z Q , ZHANG J W , WANG M N , et al . Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection [J]. Optics Express , 2020 , 28 ( 3 ): 2925 - 2938 . doi: 10.1364/oe.28.002925 http://dx.doi.org/10.1364/oe.28.002925
LI Z Q , ZHANG J W , WANG M N , et al . An anti-noise ϕ-OTDR based distributed acoustic sensing system for high-speed railway intrusion detection [J]. Laser Physics , 2020 , 30 ( 8 ): 085103 . doi: 10.1088/1555-6611/ab9119 http://dx.doi.org/10.1088/1555-6611/ab9119
WANG Z D , LOU S Q , WANG X , et al . Multi-branch long short-time memory convolution neural network for event identification in fiber-optic distributed disturbance sensor based on φ-OTDR [J]. Infrared Physics & Technology , 2020 , 109 : 103414 . doi: 10.1016/j.infrared.2020.103414 http://dx.doi.org/10.1016/j.infrared.2020.103414
WU H J , YANG M R , YANG S Q , et al . A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network [J]. IEEE Access , 2020 , 8 : 119448 - 119457 . doi: 10.1109/access.2020.3004207 http://dx.doi.org/10.1109/access.2020.3004207
0
浏览量
1861
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构