浏览全部资源
扫码关注微信
1.桂林电子科技大学 生命与环境科学学院, 广西 桂林 541004
2.中山大学肿瘤防治中心 放射科, 广东 广州 510060
[ "李 赛(1995-),男,河北石家庄人,硕士研究生,2014年于河北北方学院获得学士学位。现就读于桂林电子科技大学生命与环境科学学院,研究方向为医学图像处理。Email: 1007912471@qq.com李 赛(1995-),男,河北石家庄人,硕士研究生,2014年于河北北方学院获得学士学位。现就读于桂林电子科技大学生命与环境科学学院,研究方向为医学图像处理。Email: 1007912471@qq.com" ]
[ "陈洪波(1972-),男,湖南茶陵人,教授,博士生导师。2009年于中南大学获得博士学位。主要从事医学模式识别、医学图像处理、医学人工智能方面的研究。Email:hongbochen@163.com" ]
收稿日期:2020-11-28,
修回日期:2021-01-05,
纸质出版日期:2021-09-15
移动端阅览
李赛,黎浩江,刘立志等.基于尺度注意力沙漏网络的头部MRI解剖点自动定位[J].光学精密工程,2021,29(09):2278-2286.
LI Sai,LI Hao-jiang,LIU Li-zhi,et al.Automatic location of anatomical points in head MRI based on the scale attention hourglass network[J].Optics and Precision Engineering,2021,29(09):2278-2286.
李赛,黎浩江,刘立志等.基于尺度注意力沙漏网络的头部MRI解剖点自动定位[J].光学精密工程,2021,29(09):2278-2286. DOI: 10.37188/OPE.20212909.2278.
LI Sai,LI Hao-jiang,LIU Li-zhi,et al.Automatic location of anatomical points in head MRI based on the scale attention hourglass network[J].Optics and Precision Engineering,2021,29(09):2278-2286. DOI: 10.37188/OPE.20212909.2278.
为了自动定位头部核磁共振成像(Magnetic Resonance Imaging, MRI)中稳定解剖结构点,提出了一种基于沙漏网络(Hourglass Network, HN)的头部MRI图像解剖点自动定位方法。该方法使用HN的基本结构实现多尺度特征的提取与融合,并在融合多尺度特征时引入尺度注意力机制,提高解剖结构点的提取精度。利用DSNT(Differentiable Spatial to Numerical Transform)层将卷积神经网络生成的预测热图进行坐标回归来定位解剖点。500例头部MRI图像用于训练,300例图像用于测试,测试结果表明本文提出的方法对四个解剖点的定位准确率均超过了80%,与常用的关键点定位方法相比,该方法取得了最好的效果。该方法可辅助医生进行图像的解剖点标记,为头部图像的自动配准和头部疾病的大数据分析提供技术支持。
To automate the location of stable anatomical points in head magnetic resonance imaging (MRI), an automated anatomical point locating procedure using head MRI images has been proposed that relies on hourglass network (HN). In this method, the basic HN structure is used to extract and fuse multi-scale features. The scale attention mechanism is introduced in the fusion of multi-scale features to improve anatomical point location accuracy. This method uses the differential spatial to numerical transform (DSNT) layer to locate anatomical points using coordinate regression of the predicted heat map generated by the convolution neural network. Five hundred head MRI images were used for training, whereas three hundred images were used for testing. Accuracy of the proposed method for location of four anatomical points was >80%. Compared with the common methods currently used to locate key points, the proposed method achieved the best results. This method can assist doctors in marking anatomical points in images and provide technical support for automated registration of head MRI and big data analyses of head diseases.
SONG C R , CHENG P , CHENG J L , et al . Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI [J]. European Radiology , 2020 , 30 ( 1 ): 110 - 118 . doi: 10.1007/s00330-019-06343-0 http://dx.doi.org/10.1007/s00330-019-06343-0
RESTEGHINI C , TRAMA A , BORGONOVI E , et al . Big data in head and neck cancer [J]. Current Treatment Options in Oncology , 2018 , 19 ( 12 ): 62 . doi: 10.1007/s11864-018-0585-2 http://dx.doi.org/10.1007/s11864-018-0585-2
MING X , OEI R W , ZHAI R P , et al . MRI-based radiomics signature is a quantitative prognostic biomarker for nasopharyngeal carcinoma [J]. Scientific Reports , 2019 , 9 : 10412 . doi: 10.1038/s41598-019-46985-0 http://dx.doi.org/10.1038/s41598-019-46985-0
PENG H , DONG D , FANG M J , et al . Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma [J]. Clinical Cancer Research , 2019 , 25 ( 14 ): 4271 - 4279 . doi: 10.1158/1078-0432.ccr-18-3065 http://dx.doi.org/10.1158/1078-0432.ccr-18-3065
TOEWS M , WACHINGER C , ESTEPAR R S J , et al . A feature-based approach to big data analysis of medical images [C]. Information Processing in Medical Imaging , 2015 , 24 : 339 - 350 . doi: 10.1007/978-3-319-19992-4_26 http://dx.doi.org/10.1007/978-3-319-19992-4_26
ZHANG L , ZHOU H Y , GU D S , et al . Radiomic nomogram: pretreatment evaluation of local recurrence in nasopharyngeal carcinoma based on MR imaging [J]. Journal of Cancer , 2019 , 10 ( 18 ): 4217 - 4225 . doi: 10.7150/jca.33345 http://dx.doi.org/10.7150/jca.33345
WANG Z S , LIU X Y , CHEN W F . Head and neck CT atlases alignment based on anatomical priors constraint [J]. Journal of Medical Imaging and Health Informatics , 2019 , 9 ( 9 ): 2004 - 2011 . doi: 10.1166/jmihi.2019.2844 http://dx.doi.org/10.1166/jmihi.2019.2844
王红玉 , 冯筠 , 崔磊 , 等 . 应用显著纹理特征的医学图像配准 [J]. 光学 精密工程 , 2015 , 23 ( 9 ): 2656 - 2665 . doi: 10.3788/ope.20152309.2656 http://dx.doi.org/10.3788/ope.20152309.2656
WANG H Y , FENG J , CUI L , et al . Medical image registration based on salient texture [J]. Opt. Precision Eng. , 2015 , 23 ( 9 ): 2656 - 2665 . (in Chinese) . doi: 10.3788/ope.20152309.2656 http://dx.doi.org/10.3788/ope.20152309.2656
王宾 , 刘林 , 侯榆青 , 等 . 应用改进迭代最近点方法的三维心脏点云配准 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 474 - 484 .
WANG B , LIU L , HOU Y Q , et al . Three-dimensional cardiac point cloud registration by improved iterative closest point method [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 474 - 484 . (in Chinese)
CHEN Z X , XU Z K , YI W W , et al . Real-time and multimodal brain slice-to-volume registration using CNN [J]. Expert Systems With Applications , 2019 , 133 : 86 - 96 . doi: 10.1016/j.eswa.2019.05.016 http://dx.doi.org/10.1016/j.eswa.2019.05.016
PENNEY G P , BARRATT D C , CHAN C S K , et al . Cadaver validation of intensity-based ultrasound to CT registration [J]. Medical Image Analysis , 2006 , 10 ( 3 ): 385 - 395 . doi: 10.1016/j.media.2006.01.003 http://dx.doi.org/10.1016/j.media.2006.01.003
冯筠 , 陈雨 , 仝鑫龙 , 等 . 三维颅骨特征点的自动标定 [J]. 光学 精密工程 , 2014 , 22 ( 5 ): 1388 - 1394 . doi: 10.3788/ope.20142205.1388 http://dx.doi.org/10.3788/ope.20142205.1388
FENG J , CHEN Y , TONG X L , et al . Automatic feature point extraction for three-dimensional skull [J]. Opt. Precision Eng. , 2014 , 22 ( 5 ): 1388 - 1394 . (in Chinese) . doi: 10.3788/ope.20142205.1388 http://dx.doi.org/10.3788/ope.20142205.1388
LI S , CHEN S C , LI H J , et al . Anatomical point-of-interest detection in head MRI using multipoint feature descriptor [J]. IEEE Access , 2020 , 8 : 173239 - 173249 . doi: 10.1109/access.2020.3023743 http://dx.doi.org/10.1109/access.2020.3023743
GAN K . Automated localization of anatomical landmark points in 3D medical images [C]. 2015 IEEE International Conference on Digital Signal Processing (DSP). July 21 - 24 , 2015 . Singapore, Singapore. IEEE , 2015 : 143 - 147 . doi: 10.1109/icdsp.2015.7251847 http://dx.doi.org/10.1109/icdsp.2015.7251847
NEWELL A , YANG K Y , DENG J . Stacked Hourglass Networks for Human Pose Estimation [M]. Computer Vision-ECCV 2016. Cham : Springer International Publishing , 2016 : 483 - 499 . doi: 10.1007/978-3-319-46484-8_29 http://dx.doi.org/10.1007/978-3-319-46484-8_29
ZHANG Y D , LIU J , HUANG K Y . Dilated hourglass networks for human pose estimation [C]. 2018 Chinese Automation Congress (CAC). November 30-December 2 , 2018 . Xi'an, China. IEEE , 2018: 2597 - 2602 . doi: 10.1109/cac.2018.8623582 http://dx.doi.org/10.1109/cac.2018.8623582
LUO Y M , XU Z T , LIU P Z , et al . Combining fractal hourglass network and skeleton joints pairwise affinity for multi-person pose estimation [J]. Multimedia Tools and Applications , 2019 , 78 ( 6 ): 7341 - 7363 . doi: 10.1007/s11042-018-6502-7 http://dx.doi.org/10.1007/s11042-018-6502-7
WANG X Y , CAO Z Z , WANG R , et al . Improving human pose estimation with self-attention generative adversarial networks [J]. IEEE Access , 2019 , 7 : 119668 - 119680 . doi: 10.1109/access.2019.2936709 http://dx.doi.org/10.1109/access.2019.2936709
HUA G G , LI L H , LIU S G . Multipath affinage stacked—hourglass networks for human pose estimation [J]. Frontiers of Computer Science , 2020 , 14 ( 4 ): 1 - 12 . doi: 10.1007/s11704-019-8266-2 http://dx.doi.org/10.1007/s11704-019-8266-2
LIN T Y , DOLLAR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21 - 26 , 2017 . Honolulu, HI. IEEE , 2017 : 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
CHEN Y L , WANG Z C , PENG Y X , et al . Cascaded pyramid network for multi-person pose estimation [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18 - 23 , 2018 . Salt Lake City, UT. IEEE , 2018 : 7103 - 7112 . doi: 10.1109/cvpr.2018.00742 http://dx.doi.org/10.1109/cvpr.2018.00742
ZHAO X T , LI W , ZHANG Y F , et al . Aggregated residual dilation-based feature pyramid network for object detection [J]. IEEE Access , 2019 , 7 : 134014 - 134027 . doi: 10.1109/access.2019.2941892 http://dx.doi.org/10.1109/access.2019.2941892
OCER N E , KAPLAN G , ERDEM F , et al . Tree extraction from multi-scale UAV images using Mask R-CNN with FPN [J]. Remote Sensing Letters , 2020 , 11 ( 9 ): 847 - 856 . doi: 10.1080/2150704x.2020.1784491 http://dx.doi.org/10.1080/2150704x.2020.1784491
WANG B , CHEN S H , WANG J , et al . Residual feature pyramid networks for salient object detection [J]. The Visual Computer , 2020 , 36 ( 9 ): 1897 - 1908 . doi: 10.1007/s00371-019-01779-3 http://dx.doi.org/10.1007/s00371-019-01779-3
SUN Y , WANG X G , TANG X O . Deep convolutional network cascade for facial point detection [C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition. June 23 - 28 , 2013 . Portland, OR, USA. IEEE , 2013 : 3476 - 3483 . doi: 10.1109/cvpr.2013.446 http://dx.doi.org/10.1109/cvpr.2013.446
GALBUSERA F , NIEMEYER F , WILKE H J , et al . Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach [J]. European Spine Journal , 2019 , 28 ( 5 ): 951 - 960 . doi: 10.1007/s00586-019-05944-z http://dx.doi.org/10.1007/s00586-019-05944-z
LUVIZON D C , TABIA H , PICARD D . Human pose regression by combining indirect part detection and contextual information [J]. Computers & Graphics , 2019 , 85 : 15 - 22 . doi: 10.1016/j.cag.2019.09.002 http://dx.doi.org/10.1016/j.cag.2019.09.002
李锵 , 姚麟倩 , 关欣 . 基于级联卷积神经网络的服饰关键点定位算法 [J]. 天津大学学报(自然科学与工程技术版) , 2020 , 53 ( 3 ): 229 - 236 . doi: 10.17706/jsw.14.8.380-387 http://dx.doi.org/10.17706/jsw.14.8.380-387
LI Q , YAO L Q , GUAN X . Clothing key points detection algorithm based on cascade convolutional neural network [J]. Journal of Tianjin University (Science and Technology) , 2020 , 53 ( 3 ): 229 - 236 . (in Chinese) . doi: 10.17706/jsw.14.8.380-387 http://dx.doi.org/10.17706/jsw.14.8.380-387
ZHANG W C , SHUI P L . Contour-based corner detection via angle difference of principal directions of anisotropic Gaussian directional derivatives [J]. Pattern Recognition , 2015 , 48 ( 9 ): 2785 - 2797 . doi: 10.1016/j.patcog.2015.03.021 http://dx.doi.org/10.1016/j.patcog.2015.03.021
ZHANG W C , SUN C M . Corner detection using multi-directional structure tensor with multiple scales [J]. International Journal of Computer Vision , 2020 , 128 ( 2 ): 438 - 459 . doi: 10.1007/s11263-019-01257-2 http://dx.doi.org/10.1007/s11263-019-01257-2
WANG M Z , ZHANG W C , SUN C M , et al . Corner detection based on shearlet transform and multi-directional structure tensor [J]. Pattern Recognition , 2020 , 103 : 107299 . doi: 10.1016/j.patcog.2020.107299 http://dx.doi.org/10.1016/j.patcog.2020.107299
0
浏览量
759
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构