浏览全部资源
扫码关注微信
上海海事大学 电气自动化系,上海 201306
[ "冯肖维(1982-),男,上海人,博士,讲师,分别于2004年、2007年、2011年于上海大学获得学士、硕士、博士学位,现为上海海事大学电气自动化系讲师,主要从事计算机图形学、机器人导航、机器视觉等方面的研究。 E-mail:xwfeng1982@163.com" ]
收稿日期:2021-04-20,
修回日期:2021-06-29,
纸质出版日期:2021-10-15
移动端阅览
冯肖维,胡海云,庄睿卿等.三维点云自适应稀疏优化重构[J].光学精密工程,2021,29(10):2495-2503.
FENG Xiao-wei,HU Hai-yun,ZHUANG Rui-qing,et al.Adaptive reconstruction of 3D point cloud by sparse optimization[J].Optics and Precision Engineering,2021,29(10):2495-2503.
冯肖维,胡海云,庄睿卿等.三维点云自适应稀疏优化重构[J].光学精密工程,2021,29(10):2495-2503. DOI: 10.37188/OPE.20212910.2495.
FENG Xiao-wei,HU Hai-yun,ZHUANG Rui-qing,et al.Adaptive reconstruction of 3D point cloud by sparse optimization[J].Optics and Precision Engineering,2021,29(10):2495-2503. DOI: 10.37188/OPE.20212910.2495.
为了抑制三维点云中包含的噪声,提出一种具有特征保持的稀疏优化重构方法,在抑制噪声的同时恢复尖锐特征。首先,利用邻域点构建的局部张量矩阵的特征值对隐含流形面进行曲率估计,并凭借成对一致性投票实现特征点邻域的鲁棒统计辨识,避免离群点对于法向估计的影响;然后,为了抑制交替优化过程中产生的虚假特征,在L0最小化框架中引入具有特征辨识的自适应微分算子,并依靠投影正则项缓解曲面特征的退化;最后,根据优化后的法向场对尖锐特征进行投影恢复。实验结果表明,经本文所述算法重构后点云的误差平均减小10.2%,法向误差平均减少29.7%,同时主观视觉效果也优于现有多种典型算法。所述方法能够有效提高点云的质量,为基于点云的三维测量与逆向建模提供技术支撑。
To suppress 3D point cloud noise
a feature-preserving reconstruction method using sparse optimization is proposed
which can restore sharp features while suppressing noise. First
the curvature of the underlying manifold surface is estimated using the eigenvalues of the local tensor matrix
which is constructed by using the neighboring points. To avoid the influence of outliers on normal estimation
pair consistency voting is used to realize robust statistical identification of feature points in the neighborhood. In the L0 minimization framework
an adaptive differential operator
based on feature identification
is introduced to avoid generation of artifacts in the alternating optimization process
and the projection regularization term is used to alleviate curved surface degradation. According to the optimized normal field
the sharp features are restored by projection optimization. The experimental results show that the reconstructed point cloud error is reduced by 10.2% on average
and the normal error is reduced by 29.7% on average. In addition
the subjective visual effect is better than several state-of-the-art algorithms. The introduced method can effectively improve the point cloud quality and provide technical support for 3D measurement and reverse modeling based on the point cloud.
YADAV S K , REITEBUCH U , SKRODZKI M , et al . Constraint-based point set denoising using normal voting tensor and restricted quadratic error metrics [J]. Computers & Graphics , 2018 , 74 : 234 - 243 . doi: 10.1016/j.cag.2018.05.014 http://dx.doi.org/10.1016/j.cag.2018.05.014
冯肖维 , 姜晨 , 何敏 , 等 . 三维距离图像基于特征估计的自适应平滑 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2693 - 2701 . doi: 10.3788/ope.20192712.2693 http://dx.doi.org/10.3788/ope.20192712.2693
FENG X W , JIANG CH , HE M , et al . Adaptive smoothing for three-dimensional range image based on feature estimation [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2693 - 2701 . (in Chinese) . doi: 10.3788/ope.20192712.2693 http://dx.doi.org/10.3788/ope.20192712.2693
ALEXA M , BEHR J , COHEN-OR D , et al . Computing and rendering point set surfaces [J]. IEEE Transactions on Visualization and Computer Graphics , 2003 , 9 ( 1 ): 3 - 15 . doi: 10.1109/tvcg.2003.1175093 http://dx.doi.org/10.1109/tvcg.2003.1175093
LEVIN D . Mesh-independent Surface Interpolation [M]. Geometric Modeling for Scientific Visualization . Berlin, Heidelberg : Springer Berlin Heidelberg , 2004 : 37 - 49 . doi: 10.1007/978-3-662-07443-5_3 http://dx.doi.org/10.1007/978-3-662-07443-5_3
AMENTA N , KIL Y J . Defining point-set surfaces [J]. ACM Transactions on Graphics , 2004 , 23 ( 3 ): 264 - 270 . doi: 10.1145/1015706.1015713 http://dx.doi.org/10.1145/1015706.1015713
GUENNEBAUD G , GROSS M . Algebraic point set surfaces [J]. ACM Transactions on Graphics , 2007 , 26 ( 3 ): 23 . doi: 10.1145/1276377.1276406 http://dx.doi.org/10.1145/1276377.1276406
ÖZTIRELI A C , GUENNEBAUD G , GROSS M . Feature preserving point set surfaces based on non-linear kernel regression [J]. Computer Graphics Forum , 2009 , 28 ( 2 ): 493 - 501 . doi: 10.1111/j.1467-8659.2009.01388.x http://dx.doi.org/10.1111/j.1467-8659.2009.01388.x
HE L , SCHAEFER S . Mesh denoising via L 0 minimization [J]. ACM Transactions on Graphics , 2013 , 32 ( 4 ): 1 - 8 . doi: 10.1145/2461912.2461965 http://dx.doi.org/10.1145/2461912.2461965
AVRON H , SHARF A , GREIF C , et al . ℓ 1 -Sparse reconstruction of sharp point set surfaces [J]. ACM Transactions on Graphics , 2010 , 29 ( 5 ): 1 - 12 . doi: 10.1145/1857907.1857911 http://dx.doi.org/10.1145/1857907.1857911
XU L , LU C W , XU Y , et al . Image smoothing via L 0 gradient minimization [J]. ACM Transactions on Graphics , 2011 , 30 ( 6 ): 1 - 12 . doi: 10.1145/2070781.2024208 http://dx.doi.org/10.1145/2070781.2024208
SUN Y J , SCHAEFER S , WANG W P . Denoising point sets via L0 minimization [J]. Computer Aided Geometric Design , 2015 , 35/36 : 2 - 15 . doi: 10.1016/j.cagd.2015.03.011 http://dx.doi.org/10.1016/j.cagd.2015.03.011
CANDÈS E J , WAKIN M B , BOYD S P . Enhancing sparsity by reweighted ℓ _1 minimization [J]. Journal of Fourier Analysis and Applications , 2008 , 14 ( 5/6 ): 877 - 905 . doi: 10.1007/s00041-008-9045-x http://dx.doi.org/10.1007/s00041-008-9045-x
崔鑫 , 闫秀天 , 李世鹏 . 保持特征的散乱点云数据去噪 [J]. 光学 精密工程 , 2017 , 25 ( 12 ): 3169 - 3178 . doi: 10.3788/OPE.20172512.3169 http://dx.doi.org/10.3788/OPE.20172512.3169
CUI X , YAN X T , LI SH P . Feature-preserving scattered point cloud denoising [J]. Opt. Precision Eng. , 2017 , 25 ( 12 ): 3169 - 3178 . (in Chinese) . doi: 10.3788/OPE.20172512.3169 http://dx.doi.org/10.3788/OPE.20172512.3169
赵夫群 , 周明全 . 层次化点云去噪算法 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1618 - 1625 . doi: 10.37188/OPE.20202807.1618 http://dx.doi.org/10.37188/OPE.20202807.1618
ZHAO F Q , ZHOU M Q . Hierarchical point cloud denoising algorithm [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1618 - 1625 . (in Chinese) . doi: 10.37188/OPE.20202807.1618 http://dx.doi.org/10.37188/OPE.20202807.1618
ZHANG J , CAO J J , LIU X P , et al . Multi-normal estimation via pair consistency voting [J]. IEEE Transactions on Visualization and Computer Graphics , 2019 , 25 ( 4 ): 1693 - 1706 . doi: 10.1109/tvcg.2018.2827998 http://dx.doi.org/10.1109/tvcg.2018.2827998
JONES T R , DURAND F , ZWICKER M . Normal improvement for point rendering [J]. IEEE Computer Graphics and Applications , 2004 , 24 ( 4 ): 53 - 56 . doi: 10.1109/mcg.2004.14 http://dx.doi.org/10.1109/mcg.2004.14
WANG Y T , FENG H Y , DELORME F É , et al . An adaptive normal estimation method for scanned point clouds with sharp features [J]. Computer-Aided Design , 2013 , 45 ( 11 ): 1333 - 1348 . doi: 10.1016/j.cad.2013.06.003 http://dx.doi.org/10.1016/j.cad.2013.06.003
CHENG X , ZENG M , LIN J P , et al . Efficient L0 resampling of point sets [J]. Computer Aided Geometric Design , 2019 , 75 : 101790 . doi: 10.1016/j.cagd.2019.101790 http://dx.doi.org/10.1016/j.cagd.2019.101790
0
浏览量
375
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构