浏览全部资源
扫码关注微信
1.南京理工大学 电子工程与光电技术学院,江苏 南京 210094
2.南京理工大学 江苏省光谱成像与智能感知重点实验室,江苏 南京 210094
[ "陈 欣(1998-),女,福建南平人,博士研究生,2019于南京理工大学获得学士学位,主要从事深度学习及图像处理方面的研究。E-mail:chenxin@njust.edu.cn" ]
[ "万敏杰(1992-),男,江苏无锡人,博士, 2014年、2020年于南京理工大学分别获得学士、博士学位,目前为南京理工大学电子工程与光电技术学院博士后,主要从事图像处理、计算机视觉方面的研究。E-mail:minjiewan1992@njust.edu.cn" ]
[ "顾国华(1966-),男,江苏无锡人,博士,研究员,博士生导师,1989年、1996年、2001年于南京理工大学分别获得学士、硕士和博士学位,主要研究方向为光电成像理论与技术、图像识别处理及应用技术。E-mail:gghnjust@mail.njust.edu.cn" ]
收稿日期:2021-03-27,
修回日期:2021-04-16,
纸质出版日期:2021-11-15
移动端阅览
陈欣,万敏杰,马超等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学精密工程,2021,29(11):2672-2682.
CHEN Xin,WAN Min-jie,MA Chao,et al.Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J].Optics and Precision Engineering,2021,29(11):2672-2682.
陈欣,万敏杰,马超等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学精密工程,2021,29(11):2672-2682. DOI: 10.37188/OPE.20212911.2672.
CHEN Xin,WAN Min-jie,MA Chao,et al.Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J].Optics and Precision Engineering,2021,29(11):2672-2682. DOI: 10.37188/OPE.20212911.2672.
针对复杂背景下遥感小目标的检测问题,提出了一种改进型多尺度特征融合SSD方法。设计了一种特征图融合机制,将分辨率高的浅层特征图与具有丰富语义信息的深层特征图进行融合,并在特征图间构建特征金字塔,对小目标特征进行增强。然后,引入通道注意力模块,通过构建权重参数空间,将注意力集中在关注目标区域的通道,以减小背景干扰。最后,对先验框相对于原图的比例进行了调整,使它能够更好地适应遥感小目标尺度。利用采集的遥感飞机图像数据集对方法性能进行定性和定量测试。结果表明:改进方法的检测精度相较SSD提高了4.3%,并能够适应复杂场景下的遥感多尺度目标检测任务,降低小目标的漏检率。
For the detection of small remote sensing targets with complex backgrounds, an improved multi-scale feature fusion-based single shot multi-box detector (SSD) method was proposed. First, a feature map fusion mechanism was designed to fuse the shallow high-resolution feature maps and deep feature maps with rich semantic information, after which feature pyramids were built between the feature maps to enhance small target features. Subsequently, the channel attention module was introduced to overcome the background interference by constructing a weight parameter space to provide more attention to the channels that focus on the target region. Finally, the scale between the priori box and the original map was adjusted to better fit the small remote sensing target scale. Qualitative and quantitative tests based on image datasets from a remote sensing aircraft were then performed, with the results showing that the proposed method improves the detection accuracy by 4.3% when compared with the SSD method and can adapt to complex multi-scale remote sensing target detection tasks without reducing the detection rate for small targets.
范丽丽 , 赵宏伟 , 赵浩宇 , 等 . 基于深度卷积神经网络的目标检测研究综述 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1152 - 1164 .
FAN L L , ZHAO H W , ZHAO H Y , et al . Survey of target detection based on deep convolutional neural networks [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1152 - 1164 . (in Chinese)
方路平 , 何杭江 , 周国民 . 目标检测算法研究综述 [J]. 计算机工程与应用 , 2018 , 54 ( 13 ): 11 - 18, 33 .
FANG L P , HE H J , ZHOU G M . Research overview of object detection methods [J]. Computer Engineering and Applications , 2018 , 54 ( 13 ): 11 - 18, 33 . (in Chinese)
徐胜军 , 欧阳朴衍 , 郭学源 , 等 . 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1588 - 1599 . doi: 10.37188/ope.20202807.1588 http://dx.doi.org/10.37188/ope.20202807.1588
XU S J , OUYANG P Y , GUO X Y , et al . Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1588 - 1599 . (in Chinese) . doi: 10.37188/ope.20202807.1588 http://dx.doi.org/10.37188/ope.20202807.1588
陈彦彤 , 李雨阳 , 吕石立 , 等 . 基于深度语义分割的多源遥感图像海面溢油监测 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1165 - 1176 .
CHEN Y T , LI Y Y , LÜ SH L , et al . Research on oil spill monitoring of multi-source remote sensing image based on deep semantic segmentation [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1165 - 1176 . (in Chinese)
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 . doi: 10.1109/tpami.2016.2577031 http://dx.doi.org/10.1109/tpami.2016.2577031
LIU W , ANGUELOV D , ERHAN D , et al . SSD : Single Shot MultiBox Detector [M]. Computer Vision-ECCV 2016 . Cham : Springer International Publishing , 2016 : 21 - 37 . doi: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J , DIVVALA S , GIRSHICK R , et al . You only look once: unified, real-time object detection [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2730,2016 , Las Vegas, NV, USA. IEEE , 2016 : 779 - 788 . doi: 10.1109/cvpr.2016.91 http://dx.doi.org/10.1109/cvpr.2016.91
王博 , 董登峰 , 周维虎 , 等 . 面向激光跟踪仪跟踪恢复的合作目标视觉检测 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 271 - 282 .
WANG B , DONG D F , ZHOU W H , et al . Visual detection of target ball for laser tracker target tracking recovery [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 271 - 282 . (in Chinese)
FU C Y , LIU W , RANGA A , et al . DSSD: deconvolutional single shot detector [EB/OL]. https://arxiv.org/abs/1701.06659 https://arxiv.org/abs/1701.06659 ,[ 2017-01-23 ]. doi: 10.1109/icip.2017.8296850 http://dx.doi.org/10.1109/icip.2017.8296850
LI Z X , ZHOU F Q . FSSD: feature fusion single shot multibox detector [EB/OL]. https://arxiv.org/abs/1712.00960v1 https://arxiv.org/abs/1712.00960v1 ,[ 2017-12-04 ].
王建林 , 付雪松 , 黄展超 , 等 . 改进YOLOv2卷积神经网络的多类型合作目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 1 ): 251 - 260 . doi: 10.3788/ope.20202801.0251 http://dx.doi.org/10.3788/ope.20202801.0251
WANG J L , FU X S , HUANG ZH CH , et al . Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 251 - 260 . (in Chinese) . doi: 10.3788/ope.20202801.0251 http://dx.doi.org/10.3788/ope.20202801.0251
王俊强 , 李建胜 , 周学文 , 等 . 改进的SSD算法及其对遥感影像小目标检测性能的分析 [J]. 光学学报 , 2019 , 39 ( 6 ): 0628005 . doi: 10.3788/aos201939.0628005 http://dx.doi.org/10.3788/aos201939.0628005
WANG J Q , LI J SH , ZHOU X W , et al . Improved SSD algorithm and its performance analysis of small target detection in remote sensing images [J]. Acta Optica Sinica , 2019 , 39 ( 6 ): 0628005 . (in Chinese) . doi: 10.3788/aos201939.0628005 http://dx.doi.org/10.3788/aos201939.0628005
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2126,2017 , Honolulu, HI, USA. IEEE , 2017 : 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
姚群力 , 胡显 , 雷宏 . 基于多尺度卷积神经网络的遥感目标检测研究 [J]. 光学学报 , 2019 , 39 ( 11 ): 1128002 . doi: 10.3788/aos201939.1128002 http://dx.doi.org/10.3788/aos201939.1128002
YAO Q L , HU X , LEI H . Object detection in remote sensing images using multiscale convolutional neural networks [J]. Acta Optica Sinica , 2019 , 39 ( 11 ): 1128002 . (in Chinese) . doi: 10.3788/aos201939.1128002 http://dx.doi.org/10.3788/aos201939.1128002
0
浏览量
955
下载量
20
CSCD
关联资源
相关文章
相关作者
相关机构