浏览全部资源
扫码关注微信
1.中国科学院大学,北京 100049
2.中国科学院 空间应用工程与技术中心,北京 100094
3.中国科学院 太空应用重点实验室,北京 100094
[ "孙运达(1995-),男,河北承德人,硕士研究生,2018年于北京交通大学获得学士学位,主要从事机器视觉方面的研究。E-mail: sunyunda18@csu.ac.cn" ]
[ "万 雪(1988-),女,湖北武汉人,研究员,硕士生导师,2015年于英国帝国理工大学获得博士学位,主要从事计算机视觉算法研究。E-mail:wanxue@csu.ac.cn" ]
收稿日期:2021-04-29,
修回日期:2021-05-28,
纸质出版日期:2021-12-15
移动端阅览
孙运达,万雪,李盛阳.基于孪生网络的航天器部件追踪[J].光学精密工程,2021,29(12):2915-2923.
SUN Yun-da,WAN Xue,LI Sheng-yang.Siamese network based satellite component tracking[J].Optics and Precision Engineering,2021,29(12):2915-2923.
孙运达,万雪,李盛阳.基于孪生网络的航天器部件追踪[J].光学精密工程,2021,29(12):2915-2923. DOI: 10.37188/OPE.20212912.2915.
SUN Yun-da,WAN Xue,LI Sheng-yang.Siamese network based satellite component tracking[J].Optics and Precision Engineering,2021,29(12):2915-2923. DOI: 10.37188/OPE.20212912.2915.
为了满足空间任务实施过程中对航天器部件的精细定位需求,针对相同类别部件易出现的混淆问题,本文提出了一种基于孪生网络结构的航天器部件追踪算法。首先通过神经网络模型将航天器部件追踪问题描述为基于数据驱动的航天器部件相似性度量问题,以改进AlexNet网络结构为孪生单元设计本文所用孪生网络模型。其次,使用公开大型数据集GOT-10k训练孪生网络,以随机梯度下降作为网络优化方法,提升网络表征能力。最后针对航天器同类部件外观相似造成的定位混淆问题,提出一种结合运动时序特征的追踪策略,提高了追踪精度。以ESA公开的航天器视频数据作为测试数据,验证所提出算法性能,实验结果表明:本文所提出算法在未使用航天器相关数据训练的条件下,在舱体与太阳能帆板追踪结果交并比达到57.2%与73.1%,速度达到38 FPS,基本满足航天器部件追踪稳定可靠、精度高、抗干扰能力强等要求。
To meet the requirements for precise positioning of spacecraft components during space missions, this paper proposes a spacecraft component tracking algorithm based on a Siamese neural network. The proposed approach solves the common problem of confusing similar components. First, the spacecraft component tracking problem was modeled by training with data via the neural network; the Siamese network was designed by improving the AlexNet network. A large public dataset GOT-10k was used to train the Siamese network. Stochastic gradient descent was then used to optimize the network. Finally, to eliminate the positioning confusion occasioned by the resemblance of similar parts of the spacecraft, a tracking strategy combining motion sequence characteristics was developed to improve the tracking accuracy. The spacecraft video data published by ESA was used to test the proposed algorithm. The experimental results show that the proposed algorithm, without using spacecraft related data for training, achieves 57.2% and 73.1% of the intersection ratio of the tracking results between the cabin and solar panel, and the speed reaches 38 FPS. This demonstrates that the proposed method can meet the requirements of stable and reliable tracking of spacecraft components with high precision and strong anti-interference.
CHEN B , CAO J W , PARRA A , et al . Satellite pose estimation with deep landmark regression and nonlinear pose refinement [C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) . 2728,2019 , Seoul, Korea (South). IEEE , 2019 : 2816 - 2824 . doi: 10.1109/iccvw.2019.00343 http://dx.doi.org/10.1109/iccvw.2019.00343
You S , Zhu H , Li M , et al . A Review of Visual Trackers and Analysis of its Application to Mobile Robot [EB/OL] arXiv: 1910.09761 , 2019 .
LI B , WU W , WANG Q , et al . SiamRPN++: evolution of Siamese visual tracking with very deep networks [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 4277 - 4286 . doi: 10.1109/cvpr.2019.00441 http://dx.doi.org/10.1109/cvpr.2019.00441
MARVASTI-ZADEH S M , CHENG L , GHANEI-YAKHDAN H , et al . Deep learning for visual tracking: a comprehensive survey [J]. IEEE Transactions on Intelligent Transportation Systems , 6478 , PP( 99 ): 1 - 26 .
ZOU Z X , SHI Z W , GUO Y H , et al . Object detection in 20 years: a survey [EB/OL]. arXiv : 1905.05005 , 2019 . doi: 10.1007/978-3-319-68935-7_27 http://dx.doi.org/10.1007/978-3-319-68935-7_27
赵浩光 , 王平 , 董超 , 等 . 结合多尺度视觉显著性的舰船目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1395 - 1403 . doi: 10.3788/OPE.20202806.1395 http://dx.doi.org/10.3788/OPE.20202806.1395
ZHAO H G , WANG P , DONG CH , et al . Ship detection based on the multi-scale visual saliency model [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1395 - 1403 . (in Chinese) . doi: 10.3788/OPE.20202806.1395 http://dx.doi.org/10.3788/OPE.20202806.1395
谷雨 , 刘俊 , 沈宏海 , 等 . 基于改进多尺度分形特征的红外图像弱小目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 6 ): 1375 - 1386 . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
GU Y , LIU J , SHEN H H , et al . Infrared dim-small target detection based on an improved multiscale fractal feature [J]. Opt. Precision Eng. , 2020 , 28 ( 6 ): 1375 - 1386 . (in Chinese) . doi: 10.3788/ope.20202806.1375 http://dx.doi.org/10.3788/ope.20202806.1375
王建林 , 付雪松 , 黄展超 , 等 . 改进YOLOv2卷积神经网络的多类型合作目标检测 [J]. 光学 精密工程 , 2020 , 28 ( 1 ): 251 - 260 . doi: 10.3788/ope.20202801.0251 http://dx.doi.org/10.3788/ope.20202801.0251
WANG J L , FU X S , HUANG ZH CH , et al . Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 1 ): 251 - 260 . (in Chinese) . doi: 10.3788/ope.20202801.0251 http://dx.doi.org/10.3788/ope.20202801.0251
BAR-SHALOM Y , FORTMANN T E , CABLE P G . Tracking and data association [J]. The Journal of the Acoustical Society of America , 1990 , 87 ( 2 ): 918 - 919 . doi: 10.1121/1.398863 http://dx.doi.org/10.1121/1.398863
COMANICIU D , MEER P . Mean shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002 , 24 ( 5 ): 603 - 619 . doi: 10.1109/34.1000236 http://dx.doi.org/10.1109/34.1000236
HARE S , GOLODETZ S , SAFFARI A , et al . Struck: structured output tracking with kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2016 , 38 ( 10 ): 2096 - 2109 . doi: 10.1109/tpami.2015.2509974 http://dx.doi.org/10.1109/tpami.2015.2509974
KALAL Z , MIKOLAJCZYK K , MATAS J . Tracking-learning-detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 7 ): 1409 - 1422 . doi: 10.1109/tpami.2011.239 http://dx.doi.org/10.1109/tpami.2011.239
BOLME D S , BEVERIDGE J R , DRAPER B A , et al . Visual object tracking using adaptive correlation filters [C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1318,2010 , San Francisco, CA, USA . IEEE , 2010 : 2544 - 2550 . doi: 10.1109/cvpr.2010.5539960 http://dx.doi.org/10.1109/cvpr.2010.5539960
HENRIQUES J F , CASEIRO R , MARTINS P , et al . High-speed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 3 ): 583 - 596 . doi: 10.1109/tpami.2014.2345390 http://dx.doi.org/10.1109/tpami.2014.2345390
DANELLJAN M , HÄGER G , KHAN F S , et al . Learning spatially regularized correlation filters for visual tracking [C]. 2015 IEEE International Conference on Computer Vision (ICCV). 713,2015 , Santiago, Chile. IEEE , 2015 : 4310 - 4318 . doi: 10.1109/iccv.2015.490 http://dx.doi.org/10.1109/iccv.2015.490
HONG S , YOU T , KWAK S , et al . Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network [C]. 2015 Proceedings of the 32 nd International Conference on Machine Learning, Lille, France , 2015 . JMLR: W&CP ,2015: 597 - 606 .
BERTINETTO L , VALMADRE J , HENRIQUES J F , et al . Fully-convolutional Siamese networks for object tracking [C]. Computer Vision - ECCV 2016 Workshops , 2016 : 850 - 865 . doi: 10.1007/978-3-319-48881-3_56 http://dx.doi.org/10.1007/978-3-319-48881-3_56
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM , 2017 , 60 ( 6 ): 84 - 90 . doi: 10.1145/3065386 http://dx.doi.org/10.1145/3065386
HUANG L H , ZHAO X , HUANG K Q . GOT-10k: a large high-diversity benchmark for generic object tracking in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , 43 ( 5 ): 1562 - 1577 . doi: 10.1109/tpami.2019.2957464 http://dx.doi.org/10.1109/tpami.2019.2957464
0
浏览量
757
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构