浏览全部资源
扫码关注微信
1.北京空间飞行器总体设计部,北京 100094
2.山东大学 控制科学与工程学院,山东 济南 250061
[ "张福生(1983-),男,吉林通化人,博士,高级工程师,2011年毕业于天津大学获得博士学位,主要研究方向为飞行器设计、综合测试设计。E-mail:zhang_cast@126.com" ]
收稿日期:2021-05-06,
修回日期:2021-06-16,
纸质出版日期:2021-12-15
移动端阅览
张福生,张雷,赵阳.光纤光栅与增量极限学习机的航天器结构重构[J].光学精密工程,2021,29(12):2964-2973.
ZHANG Fu-sheng,ZHANG Lei,ZHAO Yang.Spacecraft structure reconstruction with fiber bragg grating and incremental extreme learning machine[J].Optics and Precision Engineering,2021,29(12):2964-2973.
张福生,张雷,赵阳.光纤光栅与增量极限学习机的航天器结构重构[J].光学精密工程,2021,29(12):2964-2973. DOI: 10.37188/OPE.20212912.2964.
ZHANG Fu-sheng,ZHANG Lei,ZHAO Yang.Spacecraft structure reconstruction with fiber bragg grating and incremental extreme learning machine[J].Optics and Precision Engineering,2021,29(12):2964-2973. DOI: 10.37188/OPE.20212912.2964.
为了解决航天器板状结构变形的监测问题,建立了结构应变检测与形变重构系统,提出了一种基于准分布式光纤光栅传感器网络和改进型增量式极限学习机相结合的结构形变重构方法。采用光纤光栅应变传感技术,搭建了四边固支平板结构应变检测与形变重构装置,每条通道由12个传感器按照四行三列等距离分布组成,并采用完全粘贴方式提高测量的准确度与稳定性。设计了基于增量式极限学习机的结构形变预测模型,经过训练,该模型能够有效的预测结构变形位移量,结合三次样条插值法,实现了变形曲面的三维重构。采用平均绝对误差以及均方根误差两个精度指标对重构方法进行评价,实验结果表明,该检测装置及形变重构方法在不同的变形状态下的平均绝对误差小于0.05 mm,均方根误差小于0.005 mm,满足航天器结构的形变监测需求。
A strain detection and reconstruction system was developed to monitor deformations on spacecraft plate surfaces. To this end, a displacement field reconstruction method was proposed based on fiber Bragg grating sensors and an incremental extreme learning machine (I_ELM). A four sided fixed support flat plate device was designed for strain detection and deformation reconstruction. Each of its panels had 12 sensors evenly distributed in a 4×3 grid. The accuracy and stability were improved by completely sticking method. A model for predicting structural deformation was then designed based on I_ELM. The model could effectively predict structure deformation displacement after training. Finally, 3D restoration was realized after incorporating cubic spline interpolation. The average absolute error of the proposed approach was less than 0.05 mm and root mean square error was less than 0.005 mm. Therefore, this method can be used to monitor the deformation of spacecraft surfaces.
BANG H J , SHIN H K , JU Y C . Structural health monitoring of a composite wind turbine blade using fiber Bragg grating sensors [C]. SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 7647 , Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, California, USA . 2010 , 7647 : 76474H . doi: 10.1117/12.847557 http://dx.doi.org/10.1117/12.847557
曲道明 , 孙广开 , 李红 , 等 . 变形机翼柔性蒙皮形状光纤传感及重构方法 [J]. 仪器仪表学报 , 2018 , 39 ( 1 ): 144 - 151 .
QU D M , SUN G K , LI H , et al . Optical fiber sensing and reconstruction method for morphing wing flexible skin shape [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 1 ): 144 - 151 . (in Chinese)
张俊康 , 孙广开 , 李红 , 等 . 变形机翼薄膜蒙皮形状监测光纤传感方法研究 [J]. 仪器仪表学报 , 2018 , 39 ( 2 ): 66 - 72 .
ZHANG J K , SUN G K , LI H , et al . Optical fiber shape sensing of polyimide skin for flexible morphing wing [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 2 ): 66 - 72 . (in Chinese)
唐炜 , 史仪凯 . Bragg光纤传感技术应用研究 [J]. 光学 精密工程 , 2002 , 10 ( 1 ): 79 - 83 . doi: 10.3321/j.issn:1004-924X.2002.01.015 http://dx.doi.org/10.3321/j.issn:1004-924X.2002.01.015
TANG W , SHI Y K . Optical fiber Bragg grating sensing technology [J]. Opt. Precision Eng. , 2002 , 10 ( 1 ): 79 - 83 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2002.01.015 http://dx.doi.org/10.3321/j.issn:1004-924X.2002.01.015
李丽 , 林玉池 , 付鲁华 , 等 . 光纤光栅空分光复用传感系统的研究 [J]. 光学 精密工程 , 2007 , 15 ( 4 ): 473 - 477 . doi: 10.3321/j.issn:1004-924X.2007.04.006 http://dx.doi.org/10.3321/j.issn:1004-924X.2007.04.006
LI L , LIN Y CH , FU L H , et al . Research on spatial division multiplexing of fiber Bragg grating sensors [J]. Opt. Precision Eng. , 2007 , 15 ( 4 ): 473 - 477 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2007.04.006 http://dx.doi.org/10.3321/j.issn:1004-924X.2007.04.006
孙广开 , 曲道明 , 闫光 , 等 . 软体气动驱动器弯曲变形光纤传感与形状重构 [J]. 光学 精密工程 , 2019 , 27 ( 5 ): 1052 - 1059 . doi: 10.3788/OPE.20192705.1052 http://dx.doi.org/10.3788/OPE.20192705.1052
SUN G K , QU D M , YAN G , et al . Bending deformation of optical fiber sensing and shape reconstruction of soft pneumatic driver [J]. Opt. Precision Eng. , 2019 , 27 ( 5 ): 1052 - 1059 . (in Chinese) . doi: 10.3788/OPE.20192705.1052 http://dx.doi.org/10.3788/OPE.20192705.1052
何彦霖 , 张旭 , 孙广开 , 等 . 复合基底柔性光纤曲率传感器 [J]. 光学 精密工程 , 2019 , 27 ( 6 ): 1263 - 1269 . doi: 10.3788/ope.20192706.1263 http://dx.doi.org/10.3788/ope.20192706.1263
HE Y L , ZHANG X , SUN G K , et al . Flexible curvature sensor based on composite substrate [J]. Opt. Precision Eng. , 2019 , 27 ( 6 ): 1263 - 1269 . (in Chinese) . doi: 10.3788/ope.20192706.1263 http://dx.doi.org/10.3788/ope.20192706.1263
BANG H J , KO S W , JANG M S , et al . Shape estimation and health monitoring of wind turbine tower using a FBG sensor array [C]. 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings . 1316,2012 , Graz , Austria . IEEE , 2012 : 496 - 500 . doi: 10.1109/i2mtc.2012.6229407 http://dx.doi.org/10.1109/i2mtc.2012.6229407
KO W L , RICHARDS W L . Method for real-time structure shape-sensing : US7520176 [P]. 2009-04-21 .
TESSLER A , SPANGLER J L . A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells [J]. Computer Methods in Applied Mechanics and Engineering , 2005 , 194 ( 2/3/4/5 ): 327 - 339 . doi: 10.1016/j.cma.2004.03.015 http://dx.doi.org/10.1016/j.cma.2004.03.015
朱晓锦 , 蒋丽娜 , 孙冰 , 等 . 基于B样条拟合的光纤光栅机敏柔性结构形态重构 [J]. 光学 精密工程 , 2011 , 19 ( 7 ): 1627 - 1634 . doi: 10.3788/OPE.20111907.1627 http://dx.doi.org/10.3788/OPE.20111907.1627
ZHU X J , JIANG L N , SUN B , et al . Shape reconstruction of FBG intelligent flexible structure based on B-spline fitting [J]. Opt. Precision Eng. , 2011 , 19 ( 7 ): 1627 - 1634 . (in Chinese) . doi: 10.3788/OPE.20111907.1627 http://dx.doi.org/10.3788/OPE.20111907.1627
钱晋武 , 孙流川 , 沈林勇 , 等 . 非开挖地下管线探测中的弯曲变形检测装置研究 [J]. 光学 精密工程 , 2005 , 13 ( 2 ): 179 - 184 . doi: 10.3321/j.issn:1004-924X.2005.02.010 http://dx.doi.org/10.3321/j.issn:1004-924X.2005.02.010
QIAN J W , SUN L CH , SHEN L Y , et al . On sensing apparatus for bending deformation in trenchless underground pipeline detection [J]. Opt. Precision Eng. , 2005 , 13 ( 2 ): 179 - 184 . (in Chinese) . doi: 10.3321/j.issn:1004-924X.2005.02.010 http://dx.doi.org/10.3321/j.issn:1004-924X.2005.02.010
王清华 , 荆建中 , 陈振 , 等 . 基于BP神经网络的单管通信塔损伤识别研究 [J]. 特种结构 , 2020 , 37 ( 5 ): 112 - 116 . doi: 10.19786/j.tzjg.2020.05.022 http://dx.doi.org/10.19786/j.tzjg.2020.05.022
WANG Q H , JING J ZH , CHEN ZH , et al . Damage identification of single-tower based on the BP neural network [J]. Special Structures , 2020 , 37 ( 5 ): 112 - 116 . (in Chinese) . doi: 10.19786/j.tzjg.2020.05.022 http://dx.doi.org/10.19786/j.tzjg.2020.05.022
王霞 , 董永权 , 于巧 , 等 . 结构化支持向量机研究综述 [J]. 计算机工程与应用 , 2020 , 56 ( 17 ): 24 - 32 . doi: 10.3778/j.issn.1002-8331.2005-0089 http://dx.doi.org/10.3778/j.issn.1002-8331.2005-0089
WANG X , DONG Y Q , YU Q , et al . Review of structural support vector machines [J]. Computer Engineering and Applications , 2020 , 56 ( 17 ): 24 - 32 . (in Chinese) . doi: 10.3778/j.issn.1002-8331.2005-0089 http://dx.doi.org/10.3778/j.issn.1002-8331.2005-0089
徐家琪 , 伍万能 , 孙炜 , 等 . 优化极限学习机算法及其在力信息解耦中的应用 [J]. 传感技术学报 , 2019 , 32 ( 10 ): 1487 - 1492 . doi: 10.3969/j.issn.1004-1699.2019.10.010 http://dx.doi.org/10.3969/j.issn.1004-1699.2019.10.010
XU J Q , WU W N , SUN W , et al . Optimized extreme learning machines and their application in decoupling of multi-component force information [J]. Chinese Journal of Sensors and Actuators , 2019 , 32 ( 10 ): 1487 - 1492 . (in Chinese) . doi: 10.3969/j.issn.1004-1699.2019.10.010 http://dx.doi.org/10.3969/j.issn.1004-1699.2019.10.010
BALASUNDARAM S , GUPTA D . On optimization based extreme learning machine in primal for regression and classification by functional iterative method [J]. International Journal of Machine Learning and Cybernetics , 2016 , 7 ( 5 ): 707 - 728 . doi: 10.1007/s13042-014-0283-8 http://dx.doi.org/10.1007/s13042-014-0283-8
DING S F , ZHAO H , ZHANG Y N , et al . Extreme learning machine: algorithm, theory and applications [J]. Artificial Intelligence Review , 2015 , 44 ( 1 ): 103 - 115 . doi: 10.1007/s10462-013-9405-z http://dx.doi.org/10.1007/s10462-013-9405-z
宋绍剑 , 向伟康 , 林小峰 . 增量型极限学习机改进算法 [J]. 信息与控制 , 2016 , 45 ( 6 ): 735 - 741, 758 . doi: 10.13976/j.cnki.xk.2016.0735 http://dx.doi.org/10.13976/j.cnki.xk.2016.0735
SONG SH J , XIANG W K , LIN X F . Improvement algorithm of an incremental extreme learning machine [J]. Information and Control , 2016 , 45 ( 6 ): 735 - 741, 758 . (in Chinese) . doi: 10.13976/j.cnki.xk.2016.0735 http://dx.doi.org/10.13976/j.cnki.xk.2016.0735
逄珊 , 杨欣毅 , 林学森 . 一种基于量子粒子群优化的极限学习机 [J]. 系统仿真学报 , 2017 , 29 ( 10 ): 2447 - 2458 . doi: 10.16182/j.issn1004731x.joss.201710028 http://dx.doi.org/10.16182/j.issn1004731x.joss.201710028
PANG S , YANG X Y , LIN X S . Evolutionary extreme learning machine optimized by quantum-behaved particle swarm optimization [J]. Journal of System Simulation , 2017 , 29 ( 10 ): 2447 - 2458 . (in Chinese) . doi: 10.16182/j.issn1004731x.joss.201710028 http://dx.doi.org/10.16182/j.issn1004731x.joss.201710028
0
浏览量
656
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构