浏览全部资源
扫码关注微信
大连理工大学 机械工程学院,辽宁 大连 116023
[ "王晓东(1967-),男,黑龙江哈尔滨人,教授,博士生导师,1989年于南京航空学院获得学士学位,1992年于哈尔滨船舶工程学院获得硕士学位,1995年于哈尔滨工业大学获得博士学位,主要从事微装配技术与系统、精密仪器设计与制造等方面的研究。E-mail:xdwang@dlut.edu.cn" ]
[ "徐 征(1973-),男,河南郑州人,博士,副研究员,1997年、2000年于吉林工业大学分别获得学士、硕士学位,2004年于大连理工大学获得博士学位,主要从事微纳集成制造的研究。E-mail: xuzheng@dlut.edu.cn" ]
收稿日期:2022-02-09,
修回日期:2022-03-04,
纸质出版日期:2022-06-10
移动端阅览
王晓东,于忠洋,徐征等.面向批量精密装配的显微特征定位[J].光学精密工程,2022,30(11):1353-1361.
WANG Xiaodong,YU Zhongyang,XU Zheng,et al.Microscopic feature localization for mass precision assembly tasks[J].Optics and Precision Engineering,2022,30(11):1353-1361.
王晓东,于忠洋,徐征等.面向批量精密装配的显微特征定位[J].光学精密工程,2022,30(11):1353-1361. DOI: 10.37188/OPE.20223000.0047.
WANG Xiaodong,YU Zhongyang,XU Zheng,et al.Microscopic feature localization for mass precision assembly tasks[J].Optics and Precision Engineering,2022,30(11):1353-1361. DOI: 10.37188/OPE.20223000.0047.
基于显微机器视觉的特征定位是精密装配中重要的一环,批量精密装配中装配状态不同导致特征定位错误,使流程中断进而影响装配效率,因此需要建立强鲁棒性的特征定位算法。提出一种融合方向梯度直方图特征和局部二值模式特征的支持向量机模型,并采用金字塔搜索策略提高识别效率,实现显微特征定位。在自行研制的精密自动装配设备上进行性能测试,采集不同特征进行支持向量机的训练,研究了纹理和光照等干扰因素对定位稳定性和精度的影响,并进行定位精度实验及某组件批量装配。实验结果表明:利用本方法提取目标特征位置,在多种条件下均具有良好的单峰性和重复精度,识别准确率达到98%,定位精度优于4 μm,装配精度优于7 μm。本方法能够满足实际批量生产中不同装配条件下的定位需求,为自动化精密装配定位提供了有效的解决方案。
Feature localization based on microscopic vision is important for precision assembly. Because assembly states vary in a batch assembly, feature positioning errors often arise, which significantly interrupt the process and affect efficiency. Therefore, establishing a solid and robust feature localization algorithm is crucial. This paper proposes a support vector machine (SVM) model for synthesizing gradient histograms and local binary patterns. Furthermore, the pyramid search strategy is employed to improve the recognition efficiency and realize the micro-feature localization method. Performance verification and heuristic application are conducted on self-developed precision automatic assembly equipment, and different features are collected for SVM training. The influences of interference factors such as texture and illumination on the positioning stability are investigated in detail. Additional experiments regarding the positioning accuracy and actuator component assembly are performed. Under various conditions, the proposed approach presents good unimodal, repetitive accuracy and robustness. A recognition accuracy rate of 98% can be achieved. The positioning accuracy is better than 4 μm, and the actual assembly accuracy is better than 7 μm. The feature localization method can meet the localization requirements under different assembly conditions in real batch production and provides an effective solution for precision automatic assembly localization.
SE S , LOWE D , LITTLE J . Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks [J]. The International Journal of Robotics Research , 2002 , 21 ( 8 ): 735 - 758 . doi: 10.1177/027836402761412467 http://dx.doi.org/10.1177/027836402761412467
LIANG S H , WU W , LIN L T , et al . Research of SIFT matching algorithm in binocular vision [C]. Proc SPIE 8004, MIPPR 2011 : Pattern Recognition and Computer Vision , 2011 , 8004 : 332 - 337 . doi: 10.1117/12.902894 http://dx.doi.org/10.1117/12.902894
ZHUANG Z M , GUO Z J , YE Y A . Research on video target tracking technology based on improved SIFT algorithm [C]. Proc SPIE 10322, Seventh International Conference on Electronics and Information Engineering , 2017 , 10322 : 225 - 229 . doi: 10.1117/12.2265460 http://dx.doi.org/10.1117/12.2265460
耿庆田 , 赵浩宇 , 王宇婷 , 等 . 基于改进SIFT特征提取的车标识别 [J]. 光学 精密工程 , 2018 , 26 ( 5 ): 1267 - 1274 . doi: 10.3788/ope.20182605.1267 http://dx.doi.org/10.3788/ope.20182605.1267
GENG Q T , ZHAO H Y , WANG Y T , et al . A vehicle logo recognition algorithm based on the improved SIFT feature [J]. Opt. Precision Eng. , 2018 , 26 ( 5 ): 1267 - 1274 . (in Chinese) . doi: 10.3788/ope.20182605.1267 http://dx.doi.org/10.3788/ope.20182605.1267
LIANG Y X , MAO Y , TANG Z H , et al . Efficient misalignment-robust multi-focus microscopical images fusion [J]. Signal Processing , 2019 , 161 : 111 - 123 . doi: 10.1016/j.sigpro.2019.03.020 http://dx.doi.org/10.1016/j.sigpro.2019.03.020
杨帆 , 邓振生 . 直方图均衡化与SURF重构的图像特征提取方法 [J]. 计算机工程与应用 , 2013 , 49 ( 10 ): 188 - 190, 200 . doi: 10.3778/j.issn.1002-8331.1110-0023 http://dx.doi.org/10.3778/j.issn.1002-8331.1110-0023
YANG F , DENG ZH SH . Image characteristics extraction algorithm based on histogram equalization and SURF reconstruction [J]. Computer Engineering and Applications , 2013 , 49 ( 10 ): 188 - 190, 200 . (in Chinese) . doi: 10.3778/j.issn.1002-8331.1110-0023 http://dx.doi.org/10.3778/j.issn.1002-8331.1110-0023
刘晓宁 , 狄宏璋 , 杨稳 , 等 . 基于SURF特征描述符和杰卡德距离的文物碎片拼接 [J]. 光学 精密工程 , 2020 , 28 ( 4 ): 963 - 972 . doi: 10.3788/OPE.20202804.0963 http://dx.doi.org/10.3788/OPE.20202804.0963
LIU X N , DI H ZH , YANG W , et al . Mosaic of cultural relics fragments based on SURF feature extraction descriptor and Jaccard distance [J]. Opt. Precision Eng. , 2020 , 28 ( 4 ): 963 - 972 . (in Chinese) . doi: 10.3788/OPE.20202804.0963 http://dx.doi.org/10.3788/OPE.20202804.0963
CHEN F J , YE X Q , YIN S H , et al . Automated vision positioning system for dicing semiconductor chips using improved template matching method [J]. The International Journal of Advanced Manufacturing Technology , 2019 , 100 ( 9/10/11/12 ): 2669 - 2678 . doi: 10.1007/s00170-018-2845-5 http://dx.doi.org/10.1007/s00170-018-2845-5
QI X W , MIAO L G . A template matching method for multi-scale and rotated images using ring projection vector conversion [C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing . 2729,2018 , Chongqing , China . IEEE , 2018 : 45 - 49 . doi: 10.1109/icivc.2018.8492726 http://dx.doi.org/10.1109/icivc.2018.8492726
ORON S , DEKEL T , XUE T F , et al . Best-buddies similarity-robust template matching using mutual nearest neighbors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 8 ): 1799 - 1813 . doi: 10.1109/tpami.2017.2737424 http://dx.doi.org/10.1109/tpami.2017.2737424
LIANG S , BOUDAOUD M , ACHARD C , et al . Atomic force microscope tip localization and tracking through deep learning based vision inside an electron microscope [C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 38,2019 , Macao, China. IEEE , 2019 : 2435 - 2440 . doi: 10.1109/iros40897.2019.8968567 http://dx.doi.org/10.1109/iros40897.2019.8968567
JARADAT M A K , AL-FANDI M , NASIR M T . Automatic control for a miniature manipulator based on 3D vision servo of soft objects [J]. Mechatronics , 2012 , 22 ( 4 ): 468 - 480 . doi: 10.1016/j.mechatronics.2011.10.004 http://dx.doi.org/10.1016/j.mechatronics.2011.10.004
WU G W , CHEN L C . Precise 3-D microscopic profilometry using diffractive image microscopy and artificial neural network in single-exposure manner [J]. Optics and Lasers in Engineering , 2021 , 147 : 106732 . doi: 10.1016/j.optlaseng.2021.106732 http://dx.doi.org/10.1016/j.optlaseng.2021.106732
LI C H G , CHANG Y M . Automated visual positioning and precision placement of a workpiece using deep learning [J]. The International Journal of Advanced Manufacturing Technology , 2019 , 104 ( 9/10/11/12 ): 4527 - 4538 . doi: 10.1007/s00170-019-04293-x http://dx.doi.org/10.1007/s00170-019-04293-x
YANG X W , YU Q Z , HE L F , et al . The one-against-all partition based binary tree support vector machine algorithms for multi-class classification [J]. Neurocomputing , 2013 , 113 : 1 - 7 . doi: 10.1016/j.neucom.2012.12.048 http://dx.doi.org/10.1016/j.neucom.2012.12.048
周涛 , 陆惠玲 , 陈志强 , 等 . 基于两阶段集成支持向量机的前列腺肿瘤识别 [J]. 光学 精密工程 , 2013 , 21 ( 8 ): 2137 - 2145 . doi: 10.3788/OPE.20132108.2137 http://dx.doi.org/10.3788/OPE.20132108.2137
ZHOU T , LU H L , CHEN ZH Q , et al . Prostate tumor recognition based on two-stage integrating SVM [J]. Opt. Precision Eng. , 2013 , 21 ( 8 ): 2137 - 2145 . (in Chinese) . doi: 10.3788/OPE.20132108.2137 http://dx.doi.org/10.3788/OPE.20132108.2137
LIU Y X , ZHONG S H , TIAN Z Q , et al . Design of vision servo sorting robot system based on SVM [J]. Journal of Physics: Conference Series , 2020 , 1550 ( 2 ): 022032 . doi: 10.1088/1742-6596/1550/2/022032 http://dx.doi.org/10.1088/1742-6596/1550/2/022032
SHEHNAZ M , NAVEEN N . An object recognition algorithm with structure-guided saliency detection and SVM classifier [C]. 2015 International Conference on Power, Instrumentation, Control and Computing (PICC). 911,2015 , Thrissur, India. IEEE , 2015 : 1 - 4 . doi: 10.1109/picc.2015.7455804 http://dx.doi.org/10.1109/picc.2015.7455804
FAN J F , JING F S , FANG Z J , et al . Automatic recognition system of welding seam type based on SVM method [J]. The International Journal of Advanced Manufacturing Technology , 2017 , 92 ( 1/2/3/4 ): 989 - 999 . doi: 10.1007/s00170-017-0202-8 http://dx.doi.org/10.1007/s00170-017-0202-8
0
浏览量
461
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构