浏览全部资源
扫码关注微信
1.电子科技大学 光电科学与工程学院,四川 成都 011699
2.中国科学院 物理研究所 松山湖材料实验室,广东 东莞 523429
[ "张思琪(1996-),女,河南漯河人,硕士研究生,主要从事数字无掩膜光刻的研究。E-mail:13016493173@163.com" ]
[ "李 春(1980-),男,湖北十堰人,教授,博士生导师,2008年于武汉大学获得博士学位,主要从事光电子器件及系统研究。E-mail:lichun@uestc.edu.cn" ]
收稿日期:2021-08-20,
修回日期:2021-09-23,
纸质出版日期:2022-01-15
移动端阅览
张思琪,周思翰,杨卓俊等.基于数字微镜器件的无掩膜光刻技术进展[J].光学精密工程,2022,30(01):12-30.
ZHANG Siqi,ZHOU Sihan,YANG Zhuojun,et al.Research progress of maskless lithography based on digital micromirror devices[J].Optics and Precision Engineering,2022,30(01):12-30.
张思琪,周思翰,杨卓俊等.基于数字微镜器件的无掩膜光刻技术进展[J].光学精密工程,2022,30(01):12-30. DOI: 10.37188/OPE.20223001.0012.
ZHANG Siqi,ZHOU Sihan,YANG Zhuojun,et al.Research progress of maskless lithography based on digital micromirror devices[J].Optics and Precision Engineering,2022,30(01):12-30. DOI: 10.37188/OPE.20223001.0012.
基于空间光调制器的无掩膜光刻是光刻技术重要发展方向之一。近年来,随着数字微镜器件芯片集成度与性能的提高,数字微镜器件无掩膜光刻成为一种主要的数字光刻技术。由于可灰度调制的光反射式“数字掩膜”替代了传统光刻中使用的预制物理光掩膜版,该技术极大地简化了光刻制版流程,提高了光刻的灵活性,广泛应用于平面微纳器件、超材料、微流控器件、组织生物研究等领域。从数字无掩膜光刻原理出发,简要介绍了典型匀光照明系统结构与微缩投影系统结构,进而介绍了面向平面光刻的空间分辨率增强技术、灰度光刻技术以及三维微立体光刻技术的进展。最后,列举了几类典型的数字无掩膜光刻应用,并对其发展方向进行了展望。
Maskless lithography based on spatial light modulators is an important development direction of lithography technology. In recent years, with the improvement in digital micromirror device (DMD) chip integration and performance, maskless lithography based on DMD has become the main digital lithography technology. By virtue of a programmable digital mask that can be gray-scale modulated to replace the prefabricated physical photomask used in traditional lithography, it can greatly simplify the process of lithography and improve the flexibility of lithography. It is widely used in many research fields including planar micro-nano devices, metamaterials, microfluidic device chips, and tissue biology. Starting from the principle of maskless lithography, we briefly introduce the structure of uniform illumination system and miniature projection system, and then summarize the development of spatial resolution enhancement technology for traditional planar lithography, grayscale lithography, and three-dimensional micro-stereolithography technology. Finally, we highlight the typical applications of digital maskless lithography and propose its future development direction.
崔铮 . 微纳米加工技术及其应用 [M]. 北京 : 高等教育出版社 , 2005 .
CUI ZH . Micro-Nanofabrication Technologies and Applications [M]. Beijing : Higher Education Press , 2005 . (in Chinese)
HORNBECk L J , INCORPORATED T I . Spatial light modulator and method : US5061049 A [P]. 1987 . doi: 10.1117/12.962188 http://dx.doi.org/10.1117/12.962188
POON T C , JUDAY R , HARA T . Spatial light modulators—research, development, and applications: introduction to the feature issue [J]. Applied Optics , 1998 , 37 ( 32 ): 7471 . doi: 10.1364/AO.37.007471 http://dx.doi.org/10.1364/AO.37.007471
HORNBECK L J . 128 multiplied by 128 DEFORMABLE MIRROR DEVICE [J]. Oil and Gas Journal , 1982 , 24 ( 2 ): 199 - 205 . doi: 10.1117/12.934984 http://dx.doi.org/10.1117/12.934984
HORNBECK L J . 128 × 128 deformable mirror device [J]. IEEE Transactions on Electron Devices , 1983 , 30 ( 5 ): 539 - 545 . doi: 10.1109/t-ed.1983.21163 http://dx.doi.org/10.1109/t-ed.1983.21163
INSTRUMENTSTEXAS . DLP Products [A/OL] . Shanghai:Texas Instruments. https://www.ti.com.cn/zh-cn/dlp-chip/getting-started.html https://www.ti.com.cn/zh-cn/dlp-chip/getting-started.html . doi: 10.1117/3.2258675.ch1 http://dx.doi.org/10.1117/3.2258675.ch1
姚汉民 , 胡松 , 邢廷文 . 光学投影曝光微纳加工技术 [M]. 北京 : 北京工业大学出版社 , 2006 : 7 - 48 .
YAO H M , HU S , XING T W . Optical Projection Exposure Micro-nano Processing Technology [M]. Beijing : Beijing University of Technology Press , 2006 : 7 - 48 . (in Chinese)
梁庆九 . 基于365 nm LED光源的无掩模数字光刻特性研究 [D]. 广州 : 广东工业大学 , 2017 : 16 . doi: 10.21147/j.issn.1000-9604.2018.01.05 http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.05
LIANG Q J . Research of Characters of Maskless Digital Lithography Based on 365 nm LED Light Source [D]. Guangzhou : Guangdong University of Technology , 2017 : 16 . (in Chinese) . doi: 10.21147/j.issn.1000-9604.2018.01.05 http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.05
OSSMANN J , ENDRES M , STUETZLE R . Illumination optical system for microlithography : US8174677 [P]. 2012-05-08 .
殷智勇 , 汪岳峰 , 贾文武 , 等 . 基于微透镜阵列的光束积分系统的性能分析 [J]. 中国激光 , 2012 , 39 ( 7 ): 29 - 35 . doi: 10.3788/CJL201239.0702007 http://dx.doi.org/10.3788/CJL201239.0702007
YIN ZH Y , WANG Y F , JIA W W , et al . Performance analysis of beam integrator system based on microlens array [J]. Chinese Journal of Lasers , 2012 , 39 ( 7 ): 29 - 35 . (in Chinese) . doi: 10.3788/CJL201239.0702007 http://dx.doi.org/10.3788/CJL201239.0702007
蔡燕民 , 王向朝 , 黄惠杰 . 共轭距可变的光刻投影物镜光学设计 [J]. 中国激光 , 2014 , 41 ( 4 ): 285 - 290 . doi: 10.3788/CJL201441.0416003 http://dx.doi.org/10.3788/CJL201441.0416003
CAI Y M , WANG X ZH , HUANG H J . Optical design of lithography projective lens with variable total track [J]. Chinese Journal of Lasers , 2014 , 41 ( 4 ): 285 - 290 . (in Chinese) . doi: 10.3788/CJL201441.0416003 http://dx.doi.org/10.3788/CJL201441.0416003
KIM K , HAN S , YOON J , et al . Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography [J]. Applied Physics Letters , 2016 , 109 ( 23 ): 234101 . doi: 10.1063/1.4967373 http://dx.doi.org/10.1063/1.4967373
CHEN R , LIU H , ZHANG H , et al . Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique [J]. Optics Express , 2017 , 25 ( 18 ): 21958 - 21968 . doi: 10.1364/oe.25.021958 http://dx.doi.org/10.1364/oe.25.021958
LIU J H , LIU J B , DENG Q Y , et al . Intensity modulation based optical proximity optimization for the maskless lithography [J]. Optics Express , 2020 , 28 ( 1 ): 548 . doi: 10.1364/oe.381503 http://dx.doi.org/10.1364/oe.381503
MACK C A . Fundamental Principles of Optical Lithography : The Science of Microfabrication [M]. John Wiley & Sons , 2007 . doi: 10.1002/9780470723876 http://dx.doi.org/10.1002/9780470723876
HUR J , SEO M . Optical proximity corrections for digital micromirror device-based maskless lithography [J]. Journal of the Optical Society of Korea , 2012 , 16 ( 3 ): 221 - 227 . doi: 10.3807/JOSK.2012.16.3.221 http://dx.doi.org/10.3807/JOSK.2012.16.3.221
LIANG L W , ZHOU J Y , XIANG L L , et al . Simulation of the effect of incline incident angle in DMD maskless lithography [J]. Journal of Physics: Conference Series , 2017 , 844 : 012031 . doi: 10.1088/1742-6596/844/1/012031 http://dx.doi.org/10.1088/1742-6596/844/1/012031
CHAN K F , FENG Z , REN Y , et al . High-resolution maskless lithography [J]. Journal of Microlithography Microfabrication and Microsystems , 2003 , 2 ( 4 ): 331 - 339 . doi: 10.1117/1.1611182 http://dx.doi.org/10.1117/1.1611182
MEI W H . Point array maskless lithography : US6473237 [P]. 2002-10-29 . doi: 10.1117/12.472856 http://dx.doi.org/10.1117/12.472856
YANG R , CHAN K F , FENG Z Q , et al . Design and fabrication of microlens and spatial filter array by self-alignment [C]. Proc SPIE 4985, MOEMS Display and Imaging Systems , 2003 , 4985 : 26 - 36 . doi: 10.1117/12.472865 http://dx.doi.org/10.1117/12.472865
PINER R D , ZHU J , XU F , et al . “Dip-pen” nanolithography [J]. Science , 1999 , 283 ( 5402 ): 661 - 663 . doi: 10.1126/science.283.5402.661 http://dx.doi.org/10.1126/science.283.5402.661
LIAO X , BROWN K A , SCHMUCKER A L , et al . Desktop nanofabrication with massively multiplexed beam pen lithography [J]. Nature Communications , 2013 , 4 : 2103 . doi: 10.1038/ncomms3103 http://dx.doi.org/10.1038/ncomms3103
LIU Y H , ZHAO Y Y , JIN F , et al . Λ /12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning [J]. Nano Letters , 2021 , 21 ( 9 ): 3915 - 3921 . doi: 10.1021/acs.nanolett.1c00559 http://dx.doi.org/10.1021/acs.nanolett.1c00559
TAKAHASHI K , SETOYAMA J . A UV-exposure system using DMD [J]. Electronics and Communications in Japan (Part II: Electronics) , 2000 , 83 ( 7 ): 56 - 58 . doi: 10.1002/1520-6432(200007)83:7<56::aid-ecjb8>3.0.co;2-d http://dx.doi.org/10.1002/1520-6432(200007)83:7<56::aid-ecjb8>3.0.co;2-d
郭小伟 . SLM无掩模光刻技术的研究 [D]. 成都 : 四川大学 , 2007 : 196 . doi: 10.7666/d.y1213055 http://dx.doi.org/10.7666/d.y1213055
GUO X W . Research on SLM-based Maskless Lithography [D]. Chengdu : Sichuan University , 2007 : 196 . (in Chinese) . doi: 10.7666/d.y1213055 http://dx.doi.org/10.7666/d.y1213055
IWASAKI W , TAKESHITA T , PENG Y , et al . Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment [J]. Japanese Journal of Applied Physics , 2012 , 51 : 06 FB05. doi: 10.1143/JJAP.51.06FB05 http://dx.doi.org/10.1143/JJAP.51.06FB05
KANG M S , HAN C , JEON H . Submicrometer-scale pattern generation via maskless digital photolithography [J]. Optica , 2020 , 7 ( 12 ): 1788 . doi: 10.1364/optica.406304 http://dx.doi.org/10.1364/optica.406304
LIU Y H , ZHAO Y Y , DONG X Z , et al . Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system [J]. AIP Advances , 2018 , 8 ( 6 ): 065317 . doi: 10.1063/1.5030585 http://dx.doi.org/10.1063/1.5030585
池文明 . 用于光刻成像的DMD图像曝光方法研究与实现 [D]. 成都 : 电子科技大学 , 2017 : 33 - 39 .
CHI W M . Research and Implementation of DMD Image Exposure Method for Lithography [D]. Chengdu : University of Electronic Science and Technology of China , 2017 : 33 - 39 . (in Chinese)
DALY D , STEVENS R F , HUTLEY M C , et al . The manufacture of microlenses by melting photoresist [J]. Measurement Science and Technology , 1990 , 1 ( 8 ): 759 - 766 . doi: 10.1088/0957-0233/1/8/016 http://dx.doi.org/10.1088/0957-0233/1/8/016
ERDMANN L H , DEPARNAY A , WIRTH F , et al . MEMS-based lithography for the fabrication of micro-optical components [C]. Proc SPIE 5347, Micromachining Technology for Micro-Optics and Nano-Optics II , 2003 , 5347 : 79 - 84 . doi: 10.1117/12.524447 http://dx.doi.org/10.1117/12.524447
LUO N N , ZHANG Z M . Fabrication of a curved microlens array using double gray-scale digital maskless lithography [J]. Journal of Micromechanics and Microengineering , 2017 , 27 ( 3 ): 035015 . doi: 10.1088/1361-6439/aa596a http://dx.doi.org/10.1088/1361-6439/aa596a
YUAN C , KOWSARI K , PANJWANI S , et al . Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing [J]. ACS Applied Materials & Interfaces , 2019 , 11 ( 43 ): 40662 - 40668 . doi: 10.1021/acsami.9b14692 http://dx.doi.org/10.1021/acsami.9b14692
YANG H Y , RATCHEV S , TURITTO M , et al . Rapid manufacturing of non-assembly complex micro-devices by microstereolithography [J]. Tsinghua Science & Technology , 2009 , 14 : 164 - 167 . doi: 10.1016/s1007-0214(09)70086-0 http://dx.doi.org/10.1016/s1007-0214(09)70086-0
摩方精密 . 基于面投影微立体光刻技术(PμSL)的3D打印 [EB/OL]. ( 2020-05-21 ). http://www.bmftec.cn/zh/press/details/119 http://www.bmftec.cn/zh/press/details/119 . doi: 10.1016/j.compstruct.2020.112710 http://dx.doi.org/10.1016/j.compstruct.2020.112710
Boston Micro Fabrication . 3D printing based on surface projection micro-stereolithography (PμSL) [EB/OL]. ( 2020-05-21 ). http://www.bmftec.cn/zh/press/details/119. http://www.bmftec.cn/zh/press/details/119. (in Chinese) . doi: 10.1016/j.compstruct.2020.112710 http://dx.doi.org/10.1016/j.compstruct.2020.112710
BERTSCH A , LORENZ H , RENAUD P . 3D microfabrication by combining microstereolithography and thick resist UV lithography [J]. Sensors and Actuators A: Physical , 1999 , 73 ( 1/2 ): 14 - 23 . doi: 10.1016/s0924-4247(98)00249-0 http://dx.doi.org/10.1016/s0924-4247(98)00249-0
SUN C , FANG N , WU D M , et al . Projection micro-stereolithography using digital micro-mirror dynamic mask [J]. Sensors and Actuators A: Physical , 2005 , 121 ( 1 ): 113 - 120 . doi: 10.1016/j.sna.2004.12.011 http://dx.doi.org/10.1016/j.sna.2004.12.011
CHOI J W , MACDONALD E , WICKER R . Multi-material microstereolithography [J]. The International Journal of Advanced Manufacturing Technology , 2010 , 49 ( 5/6/7/8 ): 543 - 551 . doi: 10.1007/s00170-009-2434-8 http://dx.doi.org/10.1007/s00170-009-2434-8
BERNSTEIN J , MILLER R , KELLEY W , et al . Low-noise MEMS vibration sensor for geophysical applications [J]. Journal of Microelectromechanical Systems , 1999 , 8 ( 4 ): 433 - 438 . doi: 10.1109/84.809058 http://dx.doi.org/10.1109/84.809058
XIE H K , PAN Y T , FEDDER G K . A CMOS-MEMS mirror with curled-hinge comb drives [J]. Journal of Microelectromechanical Systems , 2003 , 12 ( 4 ): 450 - 457 . doi: 10.1109/jmems.2003.815839 http://dx.doi.org/10.1109/jmems.2003.815839
WANG F , CHENG R , LI X X . MEMS vertical probe cards with ultra densely arrayed metal probes for wafer-level IC testing [J]. Journal of Microelectromechanical Systems , 2009 , 18 ( 4 ): 933 - 941 . doi: 10.1109/jmems.2009.2021815 http://dx.doi.org/10.1109/jmems.2009.2021815
ZHANG , LIU , WU , et al . Experiment research on micro-/nano processing technology of graphite as basic MEMS material [J]. Applied Sciences , 2019 , 9 ( 15 ): 3103 . doi: 10.3390/app9153103 http://dx.doi.org/10.3390/app9153103
ZHENG X Y , LEE H , WEISGRABER T H , et al . Ultralight, ultrastiff mechanical metamaterials [J]. Science , 2014 , 344 ( 6190 ): 1373 - 1377 . doi: 10.1126/science.1252291 http://dx.doi.org/10.1126/science.1252291
ZHENG X , SMITH W , JACKSON J , et al . Multiscale metallic metamaterials [J]. Nature Materials , 2016 , 15 ( 10 ): 1100 - 1106 . doi: 10.1038/nmat4694 http://dx.doi.org/10.1038/nmat4694
DERTINGER S K W , CHIU D T , JEON N L , et al . Generation of gradients having complex shapes using microfluidic networks [J]. Analytical Chemistry , 2001 , 73 ( 6 ): 1240 - 1246 . doi: 10.1021/ac001132d http://dx.doi.org/10.1021/ac001132d
BRESLAUER D N , LEE P J , LEE L P . Microfluidics-based systems biology [J]. Molecular BioSystems , 2006 , 2 ( 2 ): 97 - 112 . doi: 10.1039/b515632g http://dx.doi.org/10.1039/b515632g
CHIN C D , LAKSANASOPIN T , CHEUNG Y K , et al . Microfluidics-based diagnostics of infectious diseases in the developing world [J]. Nature Medicine , 2011 , 17 ( 8 ): 1015 - 1019 . doi: 10.1038/nm.2408 http://dx.doi.org/10.1038/nm.2408
NAGL S , SCHULZE P , OHLA S , et al . Microfluidic chips for chirality exploration [J]. Analytical Chemistry , 2011 , 83 ( 9 ): 3232 - 3238 . doi: 10.1021/ac200150w http://dx.doi.org/10.1021/ac200150w
SONG S H , KIM K , CHOI S E , et al . Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication [J]. Optics Letters , 2014 , 39 ( 17 ): 5162 - 5165 . doi: 10.1364/OL.39.005162 http://dx.doi.org/10.1364/OL.39.005162
YOON J , PARK W . Microsized 3D hydrogel printing system using microfluidic maskless lithography and single axis stepper motor [J]. BioChip Journal , 2020 , 14 ( 3 ): 317 - 325 . doi: 10.1007/s13206-020-4310-4 http://dx.doi.org/10.1007/s13206-020-4310-4
CHOI J W , WICKER R , LEE S H , et al . Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography [J]. Journal of Materials Processing Technology , 2009 , 209 ( 15/16 ): 5494 - 5503 . doi: 10.1016/j.jmatprotec.2009.05.004 http://dx.doi.org/10.1016/j.jmatprotec.2009.05.004
BOCHOVE BVAN , HANNINK G , BUMA P , et al . Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography [J]. Macromolecular Bioscience , 2016 , 16 ( 12 ): 1853 - 1863 . doi: 10.1002/mabi.201600290 http://dx.doi.org/10.1002/mabi.201600290
MOTT E J , BUSSO M , LUO X Y , et al . Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds [J]. Materials Science and Engineering: C, 2016 , 61: 301 - 311 . doi: 10.1016/j.msec.2015.11.071 http://dx.doi.org/10.1016/j.msec.2015.11.071
BOCHOVE BVAN , GRIJPMA D W . Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications [J]. Journal of Biomaterials Science(Polymer Edition) , 2019 , 30 ( 2 ): 77 - 106 . doi: 10.1080/09205063.2018.1553105 http://dx.doi.org/10.1080/09205063.2018.1553105
WU D M , FANG N , SUN C , et al . Fabrication and characterization of THz plasmonic filter [C]. Proceedings of the 2nd IEEE Conference on Nanotechnology . 2828,2002 , Washington, DC, USA . IEEE , 2002 : 229 - 231 .
SHIN Y M , BARNETT L R , GAMZINA D , et al . Terahertz vacuum electronic circuits fabricated by UV lithographic molding and deep reactive ion etching [J]. Applied Physics Letters , 2009 , 95 ( 18 ): 181505 . doi: 10.1063/1.3259823 http://dx.doi.org/10.1063/1.3259823
JOYE C D , CALAME J P , GARVEN M , et al . UV-LIGA microfabrication of 220 GHz sheet beam amplifier gratings with SU-8 photoresists [J]. Journal of Micromechanics and Microengineering , 2010 , 20 ( 12 ): 125016 . doi: 10.1088/0960-1317/20/12/125016 http://dx.doi.org/10.1088/0960-1317/20/12/125016
李克训 , 赵亚丽 , 江波 , 等 . 光学超材料的制备方法与参数提取 [J]. 强激光与粒子束 , 2015 , 27 ( 10 ): 169 - 173 . doi: 10.11884/HPLPB201527.103233 http://dx.doi.org/10.11884/HPLPB201527.103233
LI K X , ZHAO Y L , JIANG B , et al . Preparation method of optical metamaterials and parameter extraction [J]. High Power Laser and Particle Beams , 2015 , 27 ( 10 ): 169 - 173 . (in Chinese) . doi: 10.11884/HPLPB201527.103233 http://dx.doi.org/10.11884/HPLPB201527.103233
田小永 , 尹丽仙 , 李涤尘 . 三维超材料制造技术现状与趋势 [J]. 光电工程 , 2017 , 44 ( 1 ): 69 - 76, 119 . doi: 10.3969/j.issn.1003-501X.2017.01.006 http://dx.doi.org/10.3969/j.issn.1003-501X.2017.01.006
TIAN X Y , YIN L X , LI D CH . Current situation and trend of fabrication technologies for three-dimensional metamaterials [J]. Opto-Electronic Engineering , 2017 , 44 ( 1 ): 69 - 76, 119 . (in Chinese) . doi: 10.3969/j.issn.1003-501X.2017.01.006 http://dx.doi.org/10.3969/j.issn.1003-501X.2017.01.006
李战华 , 吴健康 , 胡国庆 . 微流控芯片中的流体流动 [M]. 北京 : 科学出版社 , 2012 : 282 .
LI ZH H , WU J K , HU G Q . Fluid Flow in Microfluidic Chips [M]. Beijing : Science Press , 2012 : 282 . (in Chinese)
THORSEN T , MAERKL S J , QUAKE S R . Microfluidic large-scale integration [J]. Science , 2002 , 298 ( 5593 ): 580 - 584 . doi: 10.1126/science.1076996 http://dx.doi.org/10.1126/science.1076996
丁翔宇 . 基于数字微镜芯片的无模光刻微加工技术研究 [D]. 合肥 : 中国科学技术大学 , 2014 : 25 - 38 . doi: 10.1364/ao.53.005307 http://dx.doi.org/10.1364/ao.53.005307
DING X Y . The Research of Maskless Microscopic Lithography Micromachining with Digital Micro-mirror Device [D]. Hefei : University of Science and Technology of China , 2014 : 25 - 38 . (in Chinese) . doi: 10.1364/ao.53.005307 http://dx.doi.org/10.1364/ao.53.005307
0
浏览量
1206
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构