浏览全部资源
扫码关注微信
1.河海大学 机电工程学院,江苏 常州 213022
2.苏州大学附属第三医院 妇产科,江苏 常州 213000
[ "韩 帅(1997-),男,山东枣庄人,硕士研究生,2019年于河海大学获得学士学位,主要从事惯性微流控方面的研究。E-mail: 178092684@qq.com" ]
[ "张鑫杰(1984-),男,江苏常州人,副教授,硕士生导师,2006年于合肥工业大学获得学士学位,2009年、2017年于东南大学分别获得硕士和博士学位,现为河海大学机电工程学院智能制造研究所副所长,主要从事微纳制造、软体机器等方面的研究。E-mail: xj.zhang@hhu.edu.cn" ]
收稿日期:2021-09-02,
修回日期:2021-09-28,
纸质出版日期:2022-02-15
移动端阅览
韩帅,张鑫杰,顾乔等.非对称截面螺旋流道中微粒的惯性聚焦效应[J].光学精密工程,2022,30(03):310-319.
HAN Shuai,ZHANG Xinjie,GU Qiao,et al.Inertial focusing effect of particles in spiral microchannel with asymmetric cross-section[J].Optics and Precision Engineering,2022,30(03):310-319.
韩帅,张鑫杰,顾乔等.非对称截面螺旋流道中微粒的惯性聚焦效应[J].光学精密工程,2022,30(03):310-319. DOI: 10.37188/OPE.20223003.0310.
HAN Shuai,ZHANG Xinjie,GU Qiao,et al.Inertial focusing effect of particles in spiral microchannel with asymmetric cross-section[J].Optics and Precision Engineering,2022,30(03):310-319. DOI: 10.37188/OPE.20223003.0310.
为实现生物微粒/细胞的精确操控,提出了一种非对称截面螺旋流道结构的惯性微流控芯片。基于仿真和实验的方法,对不同尺寸微粒在微流道中的惯性聚焦行为进行了研究。设计了一种“L”形截面的螺旋流道,采用仿真软件COMSOL研究微流道中的二次流场及微粒的运动轨迹。使用UV激光切割与等离子清洗键合的工艺制作芯片样件,采用高速摄像机和荧光显微镜分别拍摄6,10和15 μm粒子在微流道中不同流量时的运动轨迹。最后,对粒子运动图片进行堆叠分析,研究微粒的惯性聚焦迁移机理。结果表明:“L”形截面中产生了两对强度不同的非对称二次流场,使得10 μm和15 μm粒子在微流道外圈实现了强聚焦,而6 μm粒子实现了粗聚焦。该研究表明利用非对称二次流可以调节微粒的聚焦位置,为微粒和细胞的精准操控提供新的思路。
An inertial microfluidic chip with a spiral microchannel of asymmetric cross-section was proposed to achieve a precise control of biological microparticles/cells. The inertial focusing behavior of particles of different sizes in the microchannel was studied through simulation and experiment. A spiral channel with L shaped cross-section was designed, and the secondary flow field distribution and particle trajectory in the channel were analyzed using COMSOL simulation software. The prototype chip was fabricated by UV laser cutting and plasma cleaning bonding. The trajectories of particles of sizes 6, 10, and 15 μm at different flow rates in the channel were captured by a high speed camera and fluorescent microscope. Finally, the images of particle trajectories were stacked and analyzed and the inertial focusing and migration mechanism of the particles were investigated. The results show that two asymmetric secondary flow vortexes of different strengths are produced in the L shaped cross-section. Furthermore, the particles of 10 and 15 μm sizes focus tightly in the outer ring of the microchannel, whereas those of 6 μm size focus in it roughly. The particle focusing position can be adjusted using asymmetric secondary flow, thus providing new insights into precise particle and cell manipulation.
陈立国 , 王兆龙 , 卞雄恒 . 扇形电极微液滴分离的数字微流控芯片 [J]. 光学 精密工程 , 2019 , 27 ( 9 ): 1919 - 1925 . doi: 10.3788/ope.20192709.1919 http://dx.doi.org/10.3788/ope.20192709.1919
CHEN L G , WANG ZH L , BIAN X H . Micro-droplet split digital microfluidic device with fan-shaped electrode [J]. Optics and Precision Engineering , 2019 , 27 ( 9 ): 1919 - 1925 . (in Chinese) . doi: 10.3788/ope.20192709.1919 http://dx.doi.org/10.3788/ope.20192709.1919
RAOUFI M A , MASHHADIAN A , NIAZMAND H , et al . Experimental and numerical study of elasto-inertial focusing in straight channels [J]. Biomicrofluidics , 2019 , 13 ( 3 ): 034103 . doi: 10.1063/1.5093345 http://dx.doi.org/10.1063/1.5093345
ZHANG X J , ZHU Z X , XIANG N , et al . Automated microfluidic instrument for label-free and high-throughput cell separation [J]. Analytical Chemistry , 2018 , 90 ( 6 ): 4212 - 4220 . doi: 10.1021/acs.analchem.8b00539 http://dx.doi.org/10.1021/acs.analchem.8b00539
江洋 , 刘冲 , 魏娟 , 等 . 微流控芯片细胞动态培养装置的设计与制作 [J]. 光学 精密工程 , 2019 , 27 ( 9 ): 2020 - 2027 . doi: 10.3788/ope.20192709.2020 http://dx.doi.org/10.3788/ope.20192709.2020
JIANG Y , LIU CH , WEI J , et al . Design and fabrication of device for cell dynamic culture in microfluidic chip [J]. Optics and Precision Engineering , 2019 , 27 ( 9 ): 2020 - 2027 . (in Chinese) . doi: 10.3788/ope.20192709.2020 http://dx.doi.org/10.3788/ope.20192709.2020
CHOI K , RYU H , SIDDLE K J , et al . Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood [J]. Analytical Chemistry , 2018 , 90 ( 7 ): 4657 - 4662 . doi: 10.1021/acs.analchem.7b05200 http://dx.doi.org/10.1021/acs.analchem.7b05200
SEGRE G , SILBERBERG A . Behavior of macroscopic rigid spheres in Poiseuille flow [J]. Journal of Fluid Mechanics , 1961 , 14 : 115 - 135 . doi: 10.1017/s002211206200110x http://dx.doi.org/10.1017/s002211206200110x
DI CARLO D , IRIMIA D , TOMPKINS R G , et al . Continuous inertial focusing, ordering, and separation of particles in microchannels [J]. Proceedings of the National Academy of Sciences of the United States of America , 2007 , 104 ( 48 ): 18892 - 18897 . doi: 10.1073/pnas.0704958104 http://dx.doi.org/10.1073/pnas.0704958104
AMINI H , LEE W , DI CARLO D . Inertial microfluidic physics [J]. Lab on a Chip , 2014 , 14 ( 15 ): 2739 - 2761 . doi: 10.1039/c4lc00128a http://dx.doi.org/10.1039/c4lc00128a
AHMADI V E , BUTUN I , ALTAY R , et al . The effects of baffle configuration and number on inertial mixing in a curved serpentine micromixer: experimental and numerical study [J]. Chemical Engineering Research and Design , 2021 , 168 : 490 - 498 . doi: 10.1016/j.cherd.2021.02.028 http://dx.doi.org/10.1016/j.cherd.2021.02.028
RZHEVSKIY A S , RAZAVI BAZAZ S , DING L , et al . Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics [J]. Cancers , 2019 , 12 ( 1 ): 81 . doi: 10.3390/cancers12010081 http://dx.doi.org/10.3390/cancers12010081
谢晋 , 郭奥钿 , 卢阔 , 等 . 微流道精密磨削技术及自驱动检测芯片实验研究 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1743 - 1750 . doi: 10.1016/j.optlastec.2021.107244 http://dx.doi.org/10.1016/j.optlastec.2021.107244
XIE J , GUO A D , LU K , et al . Experimental study on grinding technology of microchannel for self-driven detection chip [J]. Optics and Precision Engineering , 2020 , 28 ( 8 ): 1743 - 1750 . (in Chinese) . doi: 10.1016/j.optlastec.2021.107244 http://dx.doi.org/10.1016/j.optlastec.2021.107244
RAZAVI BAZAZ S , ROUHI O , RAOUFI M A , et al . 3D printing of inertial microfluidic devices [J]. Scientific Reports , 2020 , 10 ( 1 ): 5929 . doi: 10.1038/s41598-020-62569-9 http://dx.doi.org/10.1038/s41598-020-62569-9
RAFEIE M , HOSSEINZADEH S , TAYLOR R A , et al . New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption [J]. Biomicrofluidics , 2019 , 13 ( 3 ): 034117 . doi: 10.1063/1.5109004 http://dx.doi.org/10.1063/1.5109004
KWON J Y , KIM T , KIM J , et al . Particle focusing under Newtonian and viscoelastic flow in a straight rhombic microchannel [J]. Micromachines , 2020 , 11 ( 11 ): 998 . doi: 10.3390/mi11110998 http://dx.doi.org/10.3390/mi11110998
MASHHADIAN A , SHAMLOO A . Inertial microfluidics: a method for fast prediction of focusing pattern of particles in the cross section of the channel [J]. Analytica Chimica Acta , 2019 , 1083 : 137 - 149 . doi: 10.1016/j.aca.2019.06.057 http://dx.doi.org/10.1016/j.aca.2019.06.057
RAFEIE M , HOSSEINZADEH S , TAYLOR R A , et al . New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption [J]. Biomicrofluidics , 2019 , 13 ( 3 ): 034117 . doi: 10.1063/1.5109004 http://dx.doi.org/10.1063/1.5109004
ASMOLOV E S . The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number [J]. Journal of Fluid Mechanics , 1999 , 381 : 63 - 87 . doi: 10.1017/s0022112098003474 http://dx.doi.org/10.1017/s0022112098003474
MARTEL J M , TONER M . Inertial focusing in microfluidics [J]. Annual Review of Biomedical Engineering , 2014 , 16 : 371 - 396 . doi: 10.1146/annurev-bioeng-121813-120704 http://dx.doi.org/10.1146/annurev-bioeng-121813-120704
0
浏览量
1103
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构