浏览全部资源
扫码关注微信
桂林电子科技大学 电子工程与自动化学院,广西 桂林 541004
[ "伍锡如(1981-),男,博士,教授,博士生导师,主要从事机器人视觉与环境感知、多机器人的协调与编队控制、非线性系统的建模与智能控制、深度学习与模式识别方面的研究。E-mail:xiruwu520@163.com" ]
[ "薛其威(1996-),男,硕士,主要从事激光雷达、多传感器信息融合与深度学习方面的研究。E-mail:19082202013@mails.guet.edu.cn" ]
收稿日期:2021-07-08,
修回日期:2021-09-01,
纸质出版日期:2022-02-25
移动端阅览
伍锡如,薛其威.基于激光雷达的无人驾驶系统三维车辆检测[J].光学精密工程,2022,30(04):489-497.
WU Xiru,XUE Qiwei.3D vehicle detection for unmanned driving systerm based on lidar[J].Optics and Precision Engineering,2022,30(04):489-497.
伍锡如,薛其威.基于激光雷达的无人驾驶系统三维车辆检测[J].光学精密工程,2022,30(04):489-497. DOI: 10.37188/OPE.20223004.0489.
WU Xiru,XUE Qiwei.3D vehicle detection for unmanned driving systerm based on lidar[J].Optics and Precision Engineering,2022,30(04):489-497. DOI: 10.37188/OPE.20223004.0489.
针对无人驾驶系统环境感知中的三维车辆检测精度低的问题,提出了一种基于激光雷达的三维车辆检测算法。通过统计滤波与随机抽样一致算法(Random Sample Consensus,RANSAC)实现地面点云分割,剔除激光雷达数据冗余点及离群点;改进3DSSD深度神经网络,利用融合采样提取点云中车辆语义信息与距离信息;根据特征信息对车辆位置进行二次调整生成中心点,使用三维中心分配器匹配中心点并生成三维车辆检测框。将KITTI数据集划为不同场景作为实验数据,对比多种三维车辆检测算法。实验结果表明:所提出的方法能够快速、准确的实现三维车辆检测,平均检测时间为0.12 s,检测精度最高可达89.72%。
This paper proposes a 3D vehicle detection algorithm for unmanned driving systems to solve the problem of low accuracy in environmental perception based on lidar. First, according to statistical filtering and a random sampling consensus algorithm (RANSAC), the ground point cloud segmentation was analyzed in order to eliminate the redundant points and outliers of the lidar data. Second, we improved the 3DSSD deep neural network to extract vehicle semantic and distance information from the point cloud through fusion sampling. According to the feature information, the candidate point position was adjusted twice to generate a center point. The 3D center-ness assignment strategy was adopted to create a 3D vehicle detection box. Finally, we divided the KITTI dataset into different scenes, to be used as experimental data, by comparing various current 3D vehicle detection algorithms. The experimental results showed that the proposed method could detect vehicles quickly and accurately. The average detection time was 0.12 s, and the highest detection accuracy was 89.72%.
尹慧琳 , 伍淑莉 , 王亚伟 , 等 . 基于层次因子图的智能车环境感知和态势认知模型 [J]. 控制与决策 , 2020 , 35 ( 10 ): 2528 - 2534 . doi: 10.13195/j.kzyjc.2019.0049 http://dx.doi.org/10.13195/j.kzyjc.2019.0049
YIN H L , WU S L , WANG Y W , et al . An intelligent vehicle environment perception and situation cognition model based on hierarchical factor graph [J]. Control and Decision , 2020 , 35 ( 10 ): 2528 - 2534 . (in Chinese) . doi: 10.13195/j.kzyjc.2019.0049 http://dx.doi.org/10.13195/j.kzyjc.2019.0049
蔡云飞 , 石庭敏 , 唐振民 . 基于双多线激光雷达的非结构化环境负障碍感知技术 [J]. 自动化学报 , 2018 , 44 ( 3 ): 569 - 576 . doi: 10.16383/j.aas.2018.c160453 http://dx.doi.org/10.16383/j.aas.2018.c160453
CAI Y F , SHI T M , TANG Z M . Negative obstacle perception in unstructured environment with double multi-beam LiDAR [J]. Acta Automatica Sinica , 2018 , 44 ( 3 ): 569 - 576 . (in Chinese) . doi: 10.16383/j.aas.2018.c160453 http://dx.doi.org/10.16383/j.aas.2018.c160453
张燕咏 , 张莎 , 张昱 , 等 . 基于多模态融合的自动驾驶感知及计算 [J]. 计算机研究与发展 , 2020 , 57 ( 9 ): 1781 - 1799 . doi: 10.7544/issn1000-1239.2020.20200255 http://dx.doi.org/10.7544/issn1000-1239.2020.20200255
ZHANG Y Y , ZHANG S , ZHANG Y , et al . Multi-modality fusion perception and computing in autonomous driving [J]. Journal of Computer Research and Development , 2020 , 57 ( 9 ): 1781 - 1799 . (in Chinese) . doi: 10.7544/issn1000-1239.2020.20200255 http://dx.doi.org/10.7544/issn1000-1239.2020.20200255
NGUYEN H V , REZATOFIGHI H , VO B N , et al . Online UAV path planning for joint detection and tracking of multiple radio-tagged objects [J]. IEEE Transactions on Signal Processing , 2019 , 67 ( 20 ): 5365 - 5379 . doi: 10.1109/tsp.2019.2939076 http://dx.doi.org/10.1109/tsp.2019.2939076
ARNOLD E , AL-JARRAH O Y , DIANATI M , et al . A survey on 3D object detection methods for autonomous driving applications [J]. IEEE Transactions on Intelligent Transportation Systems , 2019 , 20 ( 10 ): 3782 - 3795 . doi: 10.1109/tits.2019.2892405 http://dx.doi.org/10.1109/tits.2019.2892405
PEREIRA L G , FERNANDEZ P , MOURATO S , et al . Quality control of outsourced LiDAR data acquired with a UAV: a case study [J]. Remote Sensing , 2021 , 13 ( 3 ): 419 . doi: 10.3390/rs13030419 http://dx.doi.org/10.3390/rs13030419
JEONG S , KIM D , KIM S , et al . Real-time environmental cognition and sag estimation of transmission lines using UAV equipped with 3-D lidar system [J]. IEEE Transactions on Power Delivery , 2021 , 36 ( 5 ): 2658 - 2667 . doi: 10.1109/tpwrd.2020.3024965 http://dx.doi.org/10.1109/tpwrd.2020.3024965
赵泉华 , 张洪云 , 李玉 . 采用非规则标识点过程的LiDAR点云数据目标提取 [J]. 光学 精密工程 , 2018 , 26 ( 5 ): 1201 - 1210 . doi: 10.3788/OPE.20182605.1201 http://dx.doi.org/10.3788/OPE.20182605.1201
ZHAO Q H , ZHANG H Y , LI Y . Target extraction from LiDAR point cloud data using irregular geometry marked point process [J]. Opt. Precision Eng. , 2018 , 26 ( 5 ): 1201 - 1210 . (in Chinese) . doi: 10.3788/OPE.20182605.1201 http://dx.doi.org/10.3788/OPE.20182605.1201
杨军 , 党吉圣 . 采用深度级联卷积神经网络的三维点云识别与分割 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1187 - 1199 .
YANG J , DANG J S . Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1187 - 1199 . (in Chinese)
徐国艳 , 牛欢 , 郭宸阳 , 等 . 基于三维激光点云的目标识别与跟踪研究 [J]. 汽车工程 , 2020 , 42 ( 1 ): 38 - 46 . doi: 10.19562/j.chinasae.qcgc.2020.01.006 http://dx.doi.org/10.19562/j.chinasae.qcgc.2020.01.006
XU G Y , NIU H , GUO C Y , et al . Research on target recognition and tracking based on 3D laser point cloud [J]. Automotive Engineering , 2020 , 42 ( 1 ): 38 - 46 . (in Chinese) . doi: 10.19562/j.chinasae.qcgc.2020.01.006 http://dx.doi.org/10.19562/j.chinasae.qcgc.2020.01.006
晏小彬 , 彭道刚 , 戚尔江 . 基于地平面的单目视觉辅助激光雷达SLAM研究 [J]. 光学学报 , 2020 , 40 ( 24 ): 2428002 .
YAN X B , PENG D G , QI E J . Research on ground-plane-based monocular aided LiDAR SLAM [J]. Acta Optica Sinica , 2020 , 40 ( 24 ): 2428002 . (in Chinese)
赵传 , 张保明 , 余东行 , 等 . 利用迁移学习的机载激光雷达点云分类 [J]. 光学 精密工程 , 2019 , 27 ( 7 ): 1601 - 1612 . doi: 10.3788/OPE.20192707.1601 http://dx.doi.org/10.3788/OPE.20192707.1601
ZHAO C , ZHANG B M , YU D H , et al . Airborne LiDAR point cloud classification using transfer learning [J]. Opt. Precision Eng. , 2019 , 27 ( 7 ): 1601 - 1612 . (in Chinese) . doi: 10.3788/OPE.20192707.1601 http://dx.doi.org/10.3788/OPE.20192707.1601
黄如林 , 梁华为 , 陈佳佳 , 等 . 基于激光雷达的无人驾驶汽车动态障碍物检测、跟踪与识别方法 [J]. 机器人 , 2016 , 38 ( 4 ): 437 - 443 . doi: 10.13973/j.cnki.robot.2016.0437 http://dx.doi.org/10.13973/j.cnki.robot.2016.0437
HUANG R L , LIANG H W , CHEN J J , et al . Lidar based dynamic obstacle detection, tracking and recognition method for driverless cars [J]. Robot , 2016 , 38 ( 4 ): 437 - 443 . (in Chinese) . doi: 10.13973/j.cnki.robot.2016.0437 http://dx.doi.org/10.13973/j.cnki.robot.2016.0437
MENG Q , WANG W , ZHOU T , et al . Towards A weakly supervised framework for 3D point cloud object detection and annotation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , PP: 2021Mar3;PP. doi: 10.1109/tpami.2021.3063611 http://dx.doi.org/10.1109/tpami.2021.3063611
MA L F , LI Y , LI J , et al . Multi-scale point-wise convolutional neural networks for 3D object segmentation from LiDAR point clouds in large-scale environments [J]. IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 2 ): 821 - 836 . doi: 10.1109/tits.2019.2961060 http://dx.doi.org/10.1109/tits.2019.2961060
樊俊杰 , 梁华为 , 祝辉 , 等 . 基于双目视觉的四边形闭环跟踪算法 [J]. 机器人 , 2015 , 37 ( 6 ): 674 - 682 . doi: 10.13973/j.cnki.robot.2015.0674 http://dx.doi.org/10.13973/j.cnki.robot.2015.0674
FAN J J , LIANG H W , ZHU H , et al . Closed quadrilateral feature tracking algorithm based on binocular vision [J]. Robot , 2015 , 37 ( 6 ): 674 - 682 . (in Chinese) . doi: 10.13973/j.cnki.robot.2015.0674 http://dx.doi.org/10.13973/j.cnki.robot.2015.0674
刘健 , 梁华为 , 梅涛 , 等 . 基于道路形态分析的道路边界提取 [J]. 机器人 , 2016 , 38 ( 3 ): 322 - 328 . doi: 10.13973/j.cnki.robot.2016.0322 http://dx.doi.org/10.13973/j.cnki.robot.2016.0322
LIU J , LIANG H W , MEI T , et al . Road curb extraction based on road shape analysis [J]. Robot , 2016 , 38 ( 3 ): 322 - 328 . (in Chinese) . doi: 10.13973/j.cnki.robot.2016.0322 http://dx.doi.org/10.13973/j.cnki.robot.2016.0322
吴毅华 , 梁华为 , 王智灵 , 等 . 基于激光雷达回波信号的自适应阈值车道线检测 [J]. 机器人 , 2015 , 37 ( 4 ): 451 - 458 .
WU Y H , LIANG H W , WANG Z L , et al . Lane marking detection of adaptive threshold based on echo signal of lidar [J]. Robot , 2015 , 37 ( 4 ): 451 - 458 . (in Chinese)
崔鑫 , 闫秀天 , 李世鹏 . 保持特征的散乱点云数据去噪 [J]. 光学 精密工程 , 2017 , 25 ( 12 ): 3169 - 3178 . doi: 10.3788/OPE.20172512.3169 http://dx.doi.org/10.3788/OPE.20172512.3169
CUI X , YAN X T , LI S P . Feature-preserving scattered point cloud denoising [J]. Opt. Precision Eng. , 2017 , 25 ( 12 ): 3169 - 3178 . (in Chinese) . doi: 10.3788/OPE.20172512.3169 http://dx.doi.org/10.3788/OPE.20172512.3169
杨傲雷 , 曹裕 , 徐昱琳 , 等 . 基于深度卷积网络的多目标动态三维抓取位姿检测方法 [J]. 仪器仪表学报 , 2019 , 40 ( 12 ): 135 - 142 .
YANG A L , CAO Y , XU Y L , et al . Dynamic multi-target 3D grasp posture detection approach based on deep convolutional network [J]. Chinese Journal of Scientific Instrument , 2019 , 40 ( 12 ): 135 - 142 . (in Chinese)
WANG G J , WU J , XU T , et al . 3D vehicle detection with RSU LiDAR for autonomous mine [J]. IEEE Transactions on Vehicular Technology , 2021 , 70 ( 1 ): 344 - 355 . doi: 10.1109/tvt.2020.3048985 http://dx.doi.org/10.1109/tvt.2020.3048985
ZHAO K , LIU L , MENG Y , et al . 3D detection for occluded vehicles from point clouds [J]. IEEE Intelligent Transportation Systems Magazine , 4897 , PP( 99 ): 2 - 14 .
0
浏览量
676
下载量
13
CSCD
关联资源
相关文章
相关作者
相关机构