浏览全部资源
扫码关注微信
1.苏州大学 机电工程学院,江苏 苏州 215021
2.河南工程学院 机械工程学院,河南 郑州 451191
[ "王 鹤(1981-),女,河南郑州人,硕士,分别于2004年、2007年于吉林大学获得学士和硕士学位,现为苏州大学机电工程学院博士研究生,河南工程学院机械工程学院讲师,主要从事数字微流控技术的研究。E-mail: wanghejxr@163.com" ]
[ "陈立国(1974-),男,辽宁葫芦岛人,博士生导师,教授,1997年于哈尔滨理工大学获得学士学位,2003年于哈尔滨工业大学获得博士学位,主要从事微操作,微驱动机器人方面的研究。Email:chenliguo@suda.edu.cn" ]
收稿日期:2021-09-02,
修回日期:2021-11-01,
纸质出版日期:2022-03-25
移动端阅览
王鹤,陈立国.数字微流控封闭-开放区间的液滴两区运动[J].光学精密工程,2022,30(06):711-720.
WANG He,CHEN Liguo.Droplet motion between closed and open regions on digital microfluidic chips[J].Optics and Precision Engineering,2022,30(06):711-720.
王鹤,陈立国.数字微流控封闭-开放区间的液滴两区运动[J].光学精密工程,2022,30(06):711-720. DOI: 10.37188/OPE.20223006.0711.
WANG He,CHEN Liguo.Droplet motion between closed and open regions on digital microfluidic chips[J].Optics and Precision Engineering,2022,30(06):711-720. DOI: 10.37188/OPE.20223006.0711.
为了便于在数字微流控芯片上实施完整且高自动化的生化分析,在一个柔性基底上将芯片的两种常规结构加以集成,建立混合式结构,并对液滴在封闭区和开放区之间的跨区往返运动进行研究。首先,根据力平衡分析法分析液滴在两区边界处的运动特性,推导出跨越边界的条件,得到实现两区运动的优化措施。接着,在三种柔性基底上实现液滴的两区往返运动。然后,分析了封闭区上极板空间横向位置和纵向位置对液滴两区运动的影响。最后,研究了上极板厚度对液滴两区运动的影响。实验结果表明:封闭区上极板横向位置模式Ⅱ以及薄的上极板有利于实现液滴的自由跨区往返运动,而且能够降低液滴的驱动电压;对于0.8~1.2 μL的液滴来说,以聚对苯二甲酸乙二醇脂(Polyethylene terephthalate, PET)塑料片材为基底的柔性芯片上封闭区极板间距控制在150~350 μm内可实现液滴的双向跨区运动。实验结果证明了液滴能够在封闭-开放区间自由往返运动,混合式结构便于实现在单一芯片上的液滴操作及高自动化程度的分析检验。
In order to facilitate the implementation of complete and highly automated biochemical analyses on digital microfluidic chips, two conventional configurations were integrated on a flexible substrate to establish a hybrid configuration. The motion between the closed and open regions was studied. First, the motion characteristics of a droplet at the boundary were analyzed according to the force balance analysis method. Based on this, the conditions for crossing the boundary were deduced, and optimization methods to realize two-region motion were developed. Then, the two-region reciprocating motions of the droplet were realized on three types of flexible substrates. Finally, the influence of the horizontal and vertical positions and the thickness of the top plate on the closed region on the droplet movement between the two regions was analyzed. The experimental results show that lateral position mode II and a thin top plate are conducive to the free reciprocating motions of the droplets and can reduce the driving voltage; to realize bidirectional cross-region movement of 0.8
-
1.2 μL droplets, the gap between the plates in the closed region on the polyethylene terephthalate-based flexible chip should be within 150
-
350 μm. The experimental results demonstrate that the droplets can move back and forth freely between the closed and open regions, and the hybrid structure facilitates droplet operation and highly automated analysis on a single chip.
徐可欣 , 陈小龙 , 栗大超 , 等 . 基于微流控和酶比色的微创血糖连续检测仪 [J]. 光学 精密工程 , 2018 , 26 ( 11 ): 2615 - 2622 . doi: 10.3788/OPE.20182611.2615 http://dx.doi.org/10.3788/OPE.20182611.2615
XU K X , CHEN X L , LI D C , et al . Minimally invasive continuous blood glucose monitor based on microfluidic and enzyme colorimetric technologies [J]. Opt. Precision Eng. , 2018 , 26 ( 11 ): 2615 - 2622 . (in Chinese) . doi: 10.3788/OPE.20182611.2615 http://dx.doi.org/10.3788/OPE.20182611.2615
叶雄英 , 徐文晓 , 谢帅 , 等 . 面向航天医学应用的体液预处理仪研制 [J]. 光学 精密工程 , 2017 , 25 ( 8 ): 2083 - 2089 . doi: 10.3788/OPE.20172508.2083 http://dx.doi.org/10.3788/OPE.20172508.2083
YE X Y , XU W X , XIE S , et al . Development of a body fluids pretreatment instrument for aerospace medicine [J]. Opt. Precision Eng. , 2017 , 25 ( 8 ): 2083 - 2089 . (in Chinese) . doi: 10.3788/OPE.20172508.2083 http://dx.doi.org/10.3788/OPE.20172508.2083
SISTA R , HUA Z S , THWAR P , et al . Development of a digital microfluidic platform for point of care testing [J]. Lab on a Chip , 2008 , 8 ( 12 ): 2091 - 2104 . doi: 10.1039/b814922d http://dx.doi.org/10.1039/b814922d
MUGELE F , BARET J C . Electrowetting: from basics to applications [J]. Journal of Physics: Condensed Matter , 2005 , 17 ( 28 ): R705 - R774 . doi: 10.1088/0953-8984/17/28/r01 http://dx.doi.org/10.1088/0953-8984/17/28/r01
WANG H , CHEN L G , SUN L N . Digital microfluidics: a promising technique for biochemical applications [J]. Frontiers of Mechanical Engineering , 2017 , 12 ( 4 ): 510 - 525 . doi: 10.1007/s11465-017-0460-z http://dx.doi.org/10.1007/s11465-017-0460-z
PAIK P Y , PAMULA V K , CHAKRABARTY K . Adaptive cooling of integrated circuits using digital microfluidics [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems , 2008 , 16 ( 4 ): 432 - 443 . doi: 10.1109/tvlsi.2007.915434 http://dx.doi.org/10.1109/tvlsi.2007.915434
ABDELGAWAD M , PARK P , WHEELER A R . Optimization of device geometry in single-plate digital microfluidics [J]. Journal of Applied Physics , 2009 , 105 ( 9 ): 94506 - 1 . doi: 10.1063/1.3117216 http://dx.doi.org/10.1063/1.3117216
CHOI K , NG A H C , FOBEL R , et al . Digital microfluidics [J]. Annual Review of Analytical Chemistry , 2012 , 5 : 413 - 440 . doi: 10.1146/annurev-anchem-062011-143028 http://dx.doi.org/10.1146/annurev-anchem-062011-143028
KENG P Y , CHEN S P , DING H J , et al . Micro-chemical synthesis of molecular probes on an electronic microfluidic device [J]. Proceedings of the National Academy of Sciences of the United States of America , 2012 , 109 ( 3 ): 690 - 695 . doi: 10.1073/pnas.1117566109 http://dx.doi.org/10.1073/pnas.1117566109
LIN H C , LIU Y J , YAO D J . Core-shell droplets for parallel DNA ligation of an ultra-micro volume using an EWOD microfluidic system [J]. Journal of the Association for Laboratory Automation , 2010 , 15 ( 3 ): 210 - 215 . doi: 10.1016/j.jala.2010.01.010 http://dx.doi.org/10.1016/j.jala.2010.01.010
JEBRAIL M J , YANG H , MUDRIK J M , et al . A digital microfluidic method for dried blood spot analysis [J]. Lab on a Chip , 2011 , 11 ( 19 ): 3218 . doi: 10.1039/c1lc20524b http://dx.doi.org/10.1039/c1lc20524b
COONEY C G , CHEN C Y , EMERLING M R , et al . Electrowetting droplet microfluidics on a single planar surface [J]. Microfluidics and Nanofluidics , 2006 , 2 ( 5 ): 435 - 446 . doi: 10.1007/s10404-006-0085-8 http://dx.doi.org/10.1007/s10404-006-0085-8
ABDELGAWAD M , WHEELER A R . Rapid prototyping in copper substrates for digital microfluidics [J]. Advanced Materials , 2007 , 19 ( 1 ): 133 - 137 . doi: 10.1002/adma.200601818 http://dx.doi.org/10.1002/adma.200601818
YI U C , KIM C J . Characterization of electrowetting actuation on addressable single-side coplanar electrodes [J]. Journal of Micromechanics and Microengineering , 2006 , 16 ( 10 ): 2053 - 2059 . doi: 10.1088/0960-1317/16/10/018 http://dx.doi.org/10.1088/0960-1317/16/10/018
GORBATSOVA J , JAANUS M , KALJURAND M . Digital microfluidic sampler for a portable capillary electropherograph [J]. Analytical Chemistry , 2009 , 81 ( 20 ): 8590 - 8595 . doi: 10.1021/ac9015825 http://dx.doi.org/10.1021/ac9015825
BERTHIER J , CLEMENTZ P , ROUX J , et al . Modeling microdrop motion between covered and open regions of EWOD Microsystems [C]. Proceedings of Nano Science and Technology Institute (NSTI) Nanotechnology Conference and Trade Show , Boston, USA , 2006 : 685 - 688 .
WANG G , TENG D , FAN S K . Three-dimensional digital microfluidics and applications [C]. 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems . 58,2012 , Kyoto , Japan . IEEE , 2012 : 415 - 418 . doi: 10.1109/nems.2012.6196807 http://dx.doi.org/10.1109/nems.2012.6196807
FAN S K , HSIEH T H , LIN D Y . General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting [J]. Lab on a Chip , 2009 , 9 ( 9 ): 1236 - 1242 . doi: 10.1039/b816535a http://dx.doi.org/10.1039/b816535a
JONES T B , WANG K L , YAO D J . Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis [J]. Langmuir , 2004 , 20 ( 7 ): 2813 - 2818 . doi: 10.1021/la035982a http://dx.doi.org/10.1021/la035982a
MUGELE F . Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics [J]. Soft Matter , 2009 , 5 ( 18 ): 3377 . doi: 10.1039/b904493k http://dx.doi.org/10.1039/b904493k
WANG W Q , JONES T B . Moving droplets between closed and open microfluidic systems [J]. Lab on a Chip , 2015 , 15 ( 10 ): 2201 - 2212 . doi: 10.1039/c5lc00014a http://dx.doi.org/10.1039/c5lc00014a
WANG H , CHEN L G . Electrowetting-on-dielectric based economical digital microfluidic chip on flexible substrate by inkjet printing [J]. Micromachines , 2020 , 11 ( 12 ): 1113 . doi: 10.3390/mi11121113 http://dx.doi.org/10.3390/mi11121113
0
浏览量
1059
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构