浏览全部资源
扫码关注微信
北京跟踪与通信技术研究所,北京 100094
[ "李 静(1977-),女,山东荣成人,博士,助理研究员,2008年于海军航空工程大学获得博士学位,现为北京跟踪与通信技术研究所助理研究员,主要从事航天工程总体研究。E-mail: zuobin97117@163.com" ]
收稿日期:2021-09-21,
修回日期:2021-10-11,
纸质出版日期:2022-03-25
移动端阅览
李静.基于NMI特征的遥感影像线性迭代聚类超像素分割算法[J].光学精密工程,2022,30(06):734-742.
LI Jing.SLIC super-pixel segmentation algorithm base on NMI features used in remote sensing image[J].Optics and Precision Engineering,2022,30(06):734-742.
李静.基于NMI特征的遥感影像线性迭代聚类超像素分割算法[J].光学精密工程,2022,30(06):734-742. DOI: 10.37188/OPE.20223006.0734.
LI Jing.SLIC super-pixel segmentation algorithm base on NMI features used in remote sensing image[J].Optics and Precision Engineering,2022,30(06):734-742. DOI: 10.37188/OPE.20223006.0734.
针对现有基于简单线性迭代聚类(SLIC)的超像素分割算法用于细节丰富的遥感图像处理时,存在的易受噪声干扰、过分割问题,本文提出一种结合超像素块之间基于归一化转动惯量(NMI)特征的相似性度量的遥感影像分割方法,对分割效果进行改善。本文首先利用引导滤波算法对影像进行平滑处理,去除椒盐噪点;再通过现有的线性迭代聚类算法对影像进行像素级分割,生成初始的超像素;进而确定出微小超像素块,然后计算其与相邻超像素块的相似性度量值,将其合并入差异性最小的相邻超像素块,达到分割影像的目的。本文方法在传统分割算法基础上降低了超像素对噪声的敏感性,提高了影像分割的精度。实验表明,论文提出算法可将测试遥感图像的分割超像素块数量由4 171减小为282,微小超像素块数量减少60%以上,有效降低噪声点的影响,改善以往算法存在的过分割缺陷。
The state-of-the-art super-pixel segmentation algorithm based on simple linear iterative clustering (SLIC) has the problem of over segmentation and discontinuity when processing remote sensing images with extensive details. Here, we propose a remote sensing image segmentation method that combines the NMI-based similarity measure between super-pixel blocks to improve the segmentation effect. First, a guided filtering is used to smooth the pepper noise in the image. Second, the image is segmented at a pixel level using the SLIC algorithm to generate initial super-pixels. Third, to achieve image segmentation, the micro super-pixels are determined based on some criterion and then merged into the adjacent super-pixel blocks with the least difference by calculating the similarity measure with its adjacent super-pixel blocks. This paper’s method reduces the sensitivity of super-pixel to noise and improves the precision of image segmentation compared with traditional segmentation algorithms. The experimental results indicate that the proposed algorithm reduced the number of segmented super-pixel blocks from 4 171 to 282 and reduced the number of micro super-pixel blocks by more than 60%. It also reduced the influence of noise points and improved the over segmentation defects of existing algorithms.
窦鹏 , 翟亮 , 张继贤 . 基于GLC面向对象遥感影像分类方法的研究与应用 [J]. 测绘与空间地理信息 , 2013 , 36 ( 11 ): 68 - 71, 74 . doi: 10.3969/j.issn.1672-5867.2013.11.020 http://dx.doi.org/10.3969/j.issn.1672-5867.2013.11.020
DOU P , ZHAI L , ZHANG J X . Research and application of object- oriented remote sensing image classification based on GLC [J]. Geomatics & Spatial Information Technology , 2013 , 36 ( 11 ): 68 - 71, 74 . (in Chinese) . doi: 10.3969/j.issn.1672-5867.2013.11.020 http://dx.doi.org/10.3969/j.issn.1672-5867.2013.11.020
董心玉 . 基于面向对象的高分一号遥感影像森林分类研究 [D]. 哈尔滨 : 东北林业大学 , 2016 .
DONG X Y . An Object-based Forest Type Classification Research Based on GF- 1 Remote Sensing Data [D]. Harbin : Northeast Forestry University , 2016 . (in Chinese)
REN , MALIK . Learning a classification model for segmentation [C]. Proceedings Ninth IEEE International Conference on Computer Vision. 1316,2003 , Nice, France. IEEE , 2003 : 10 - 17 . doi: 10.1109/iccv.2003.1238308 http://dx.doi.org/10.1109/iccv.2003.1238308
STUTZ D , HERMANS A , LEIBE B . Superpixels: an evaluation of the state-of-the-art [J]. Computer Vision and Image Understanding , 2018 , 166 : 1 - 27 . doi: 10.1016/j.cviu.2017.03.007 http://dx.doi.org/10.1016/j.cviu.2017.03.007
ACHANTA R , SHAJI A , SMITH K , et al . SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2012 , 34 ( 11 ): 2274 - 2282 . doi: 10.1109/tpami.2012.120 http://dx.doi.org/10.1109/tpami.2012.120
LIU Y J , YU M J , LI B J , et al . Intrinsic manifold SLIC: a simple and efficient method for computing content-sensitive superpixels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 3 ): 653 - 666 . doi: 10.1109/tpami.2017.2686857 http://dx.doi.org/10.1109/tpami.2017.2686857
JAMPANI V , SUN D , LIU M Y , et al . Superpixel sampling networks [C]. Springer, The 4th Proceedings of the European Conference on Computer Vision . Munich : Springer , 2018 : 363 - 380 . doi: 10.1007/978-3-030-01234-2_22 http://dx.doi.org/10.1007/978-3-030-01234-2_22
LEI T , JIA X H , ZHANG Y N , et al . Superpixel-based fast fuzzy C-means clustering for color image segmentation [J]. IEEE Transactions on Fuzzy Systems , 2019 , 27 ( 9 ): 1753 - 1766 . doi: 10.1109/tfuzz.2018.2889018 http://dx.doi.org/10.1109/tfuzz.2018.2889018
ZHAO J X , BO R , HOU Q B , et al . FLIC: Fast linear iterative clustering with active search [J]. Computational Visual Media , 2018 , 4 ( 4 ): 333 - 348 . doi: 10.1007/s41095-018-0123-y http://dx.doi.org/10.1007/s41095-018-0123-y
刘仲民 , 王阳 , 李战明 , 等 . 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法 [J]. 吉林大学学报(工学版) , 2018 , 48 ( 6 ): 1931 - 1937 . doi: 10.13229/j.cnki.jdxbgxb20171009 http://dx.doi.org/10.13229/j.cnki.jdxbgxb20171009
LIU Z M , WANG Y , LI Z M , et al . Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University (Engineering and Technology Edition) , 2018 , 48 ( 6 ): 1931 - 1937 . (in Chinese) . doi: 10.13229/j.cnki.jdxbgxb20171009 http://dx.doi.org/10.13229/j.cnki.jdxbgxb20171009
LU L Z , WANG C , YIN X . Incorporating texture into SLIC super-pixels method for high spatial resolution remote sensing image segmentation [C]. 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). 1619,2019 , Istanbul, Turkey. IEEE , 2019 : 1 - 5 . doi: 10.1109/agro-geoinformatics.2019.8820692 http://dx.doi.org/10.1109/agro-geoinformatics.2019.8820692
HE K M , SUN J , TANG X O . Guided image filtering [C]. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE , : 1397- 1409 .
陆方杰 , 夏顺仁 . 基于归一化转动惯量的显微图像拼接算法 [J]. 中国医疗器械杂志 , 2007 , 31 ( 6 ): 404 - 406 . doi: 10.3969/j.issn.1671-7104.2007.06.004 http://dx.doi.org/10.3969/j.issn.1671-7104.2007.06.004
LU F J , XIA S R . A microscopic image mosaicing algorithm based on normalized moment of inertia [J]. Chinese Journal of Medical Instrumentation , 2007 , 31 ( 6 ): 404 - 406 . (in Chinese) . doi: 10.3969/j.issn.1671-7104.2007.06.004 http://dx.doi.org/10.3969/j.issn.1671-7104.2007.06.004
NGUYEN T A , SONG W S , HONG M C . Spatially adaptive denoising algorithm for a single image corrupted by Gaussian noise [J]. IEEE Transactions on Consumer Electronics , 2010 , 56 ( 3 ): 1610 - 1615 . doi: 10.1109/tce.2010.5606304 http://dx.doi.org/10.1109/tce.2010.5606304
0
浏览量
605
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构