浏览全部资源
扫码关注微信
1.西安工业大学 计算机科学与工程学院,陕西 西安 710021
2.西南财经大学 经济信息工程学院,四川 成都 611130
3.宁夏大学 信息工程学院,宁夏 银川 750021
4.四川师范大学 工学院,四川 成都 610101
[ "傅妍芳(1978-),女,甘肃人,教授,硕士生导师,2005年、2008年于西北工业大学分别获得硕士、博士学位,现为西安工业大学计算机科学与工程学院副院长,中国仿真学会常务理事,主要从事计算机仿真、人工智能方面的研究。E-mail:fuyanfang@xatu.edu.cn" ]
[ "尹诗白(1984-),女,湖北人,博士,副教授,博士生导师, 2006年、2009年于西安工业大学分别获得学士、硕士学位,2013年于长安大学获得博士学位,主要从事图像处理、模式识别和机器视觉方面的研究。 E-mail: shibai.yin@gmail.com" ]
收稿日期:2021-09-22,
修回日期:2021-10-15,
纸质出版日期:2022-05-10
移动端阅览
傅妍芳,尹诗白,邓箴等.多级特征逐步细化及边缘增强的图像去雾[J].光学精密工程,2022,30(09):1091-1100.
FU Yangfang,YIN Shibai,DENG Zhen,et al.Multi-level features progressive refinement and edge enhancement network for image dehazing[J].Optics and Precision Engineering,2022,30(09):1091-1100.
傅妍芳,尹诗白,邓箴等.多级特征逐步细化及边缘增强的图像去雾[J].光学精密工程,2022,30(09):1091-1100. DOI: 10.37188/OPE.20223009.1091.
FU Yangfang,YIN Shibai,DENG Zhen,et al.Multi-level features progressive refinement and edge enhancement network for image dehazing[J].Optics and Precision Engineering,2022,30(09):1091-1100. DOI: 10.37188/OPE.20223009.1091.
为设计合理有效的神经网络框架,提高去雾算法的精度,保留完整的边缘细节,提出了常微分方程(Ordinary Differential Equation, ODE)启发的多级特征逐步细化及边缘增强的去雾算法。利用多级特征提取子网络,从输入雾图中提取出包含细节信息的低级特征和包含语义信息的高级特征,用于后续去雾结果的逐步细化。受残差网络框架与ODE求解策略关联性启发,依据两步两阶的蛙跳方法Leapfrog设计出Leapfrog模块,并串联多个Leapfrog模块,模拟ODE离散的逼近求解过程,构造逐步细化的去雾子网络。此子网络中,每个Leapfrog模块在交替输入的低级/高级特征的互补信息引导下,不断细化前一个Leapfrog模块估计的去雾结果。受二阶微分算子实施边缘增强的启发,边缘增强子网络利用预训练的UNet估计最后一个Leapfrog模块的去雾图像边缘,并叠加到此去雾图像上得到增强边缘,保留细节的最终去雾结果。实验表明,在真实图像及合成图像上,本算法均能取得较好的去雾效果,且在视觉评价和客观评价方面优于已有的去雾算法,与EAAN相比去雾精度提高了5%,运行时间仅有0.032 s,能有效用于图像去雾的工程实践中。
An ordinary differential equation (ODE)-based multi-level feature progressive refinement and edge enhancement network is proposed for image dehazing to provide an effective convolutional neural network framework with an algorithm designed to preserve edges while improving accuracy. The study mainly comprises subnetworks of multi-level feature extraction, ODE-based progressive refinement, and edge enhancement. First, the multi-level features extraction subnetwork is leveraged to extract low-level features with detailed information and high-level features with semantic information from hazy images, to enable the subsequent dehazing operations. Second, a novel Leapfrog module is designed based on the relationship between the residual framework and ODE solver by cascading Leapfrog modules to model an approximation solution for ODEs. Finally, the progressive refinement subnetwork is developed. Notably, each Leapfrog module refines the output of the previous Leapfrog with alternative low/high-level features. Finally, motivated by the effectiveness of edge enhancement via second-order differential operators in the edge enhancement network, the edge of the dehazing result predicted by the last Leapfrog module is calculated using the pretrained UNet and added back into dehazing to enhance edges and preserve details. The experimental results demonstrate that the proposed method outperforms the existing methods on both synthetic images and real images quantitatively as well as qualitatively. The dehazing accuracy is improved by 5% and the runtime is only 0.032 s. Hence, the proposed method can be incorporated into practical dehazing applications in engineering.
杨燕 , 梁小珍 , 张金龙 . 分离特征和协同网络下的端到端图像去雾 [J]. 光学 精密工程 , 2021 , 29 ( 8 ): 1931 - 1941 . doi: 10.37188/OPE.2021.0003 http://dx.doi.org/10.37188/OPE.2021.0003
YANG Y , LIANG X ZH , ZHANG J L . End-to-end image dehazing under separated features and collaborative network [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1931 - 1941 . (in Chinese) . doi: 10.37188/OPE.2021.0003 http://dx.doi.org/10.37188/OPE.2021.0003
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
FENG T , WANG C S , CHEN X W , et al . URNet: a U-Net based residual network for image dehazing [J]. Applied Soft Computing , 2021 , 102 : 106884 . doi: 10.1016/j.asoc.2020.106884 http://dx.doi.org/10.1016/j.asoc.2020.106884
BERMAN D , TREIBITZ T , AVIDAN S . Non-local image dehazing [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition , 2730,2016 , Las Vegas, NV, USA . IEEE , 2016 : 1674 - 1682 . doi: 10.1109/cvpr.2016.185 http://dx.doi.org/10.1109/cvpr.2016.185
PANAGOPOULOS A , WANG C H , SAMARAS D , et al . Estimating shadows with the bright channel cue [C]. Trends and Topics in Computer Vision , 2012 : 1 - 12 . doi: 10.1007/978-3-642-35740-4_1 http://dx.doi.org/10.1007/978-3-642-35740-4_1
YU T , SONG K , MIAO P , et al . Nighttime single image dehazing via pixel-wise alpha blending [J]. IEEE Access , 2019 , 7 : 114619 - 114630 . doi: 10.1109/access.2019.2936049 http://dx.doi.org/10.1109/access.2019.2936049
YIN S B , WANG Y B , YANG Y H . A novel image-dehazing network with a parallel attention block [J]. Pattern Recognition , 2020 , 102 : 107255 . doi: 10.1016/j.patcog.2020.107255 http://dx.doi.org/10.1016/j.patcog.2020.107255
YIN , WANG , YANG . A novel residual dense pyramid network for\r image dehazing [J]. Entropy , 2019 , 21 ( 11 ): 1123 . doi: 10.3390/e21111123 http://dx.doi.org/10.3390/e21111123
SHAO Y J , LI L , REN W Q , et al . Domain adaptation for image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 2805 - 2814 . doi: 10.1109/cvpr42600.2020.00288 http://dx.doi.org/10.1109/cvpr42600.2020.00288
QU Y Y , CHEN Y Z , HUANG J Y , et al . Enhanced Pix2pix dehazing network [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1520,2019 , Long Beach, CA, USA. IEEE , 2019 : 8152 - 8160 . doi: 10.1109/cvpr.2019.00835 http://dx.doi.org/10.1109/cvpr.2019.00835
WANG C , SHEN H Z , FAN F , et al . EAA-Net: a novel edge assisted attention network for single image dehazing [J]. Knowledge-Based Systems , 2021 , 228 : 107279 . doi: 10.1016/j.knosys.2021.107279 http://dx.doi.org/10.1016/j.knosys.2021.107279
SHEN J W , LI Z Y , YU L , et al . Implicit Euler ODE networks for single-image dehazing [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1419,2020 , Seattle, WA, USA. IEEE , 2020 : 877 - 886 . doi: 10.1109/cvprw50498.2020.00117 http://dx.doi.org/10.1109/cvprw50498.2020.00117
NAGY Á , OMLE I , KAREEM H , et al . Stable, explicit, leapfrog-hopscotch algorithms for the diffusion equation [J]. Computation , 2021 , 9 ( 8 ): 92 . doi: 10.3390/computation9080092 http://dx.doi.org/10.3390/computation9080092
王卫星 , 赵恒 . 结合改进Retinex及自适应分数阶微分的雾霾公路交通图像增强 [J]. 光学 精密工程 , 2020 , 28 ( 8 ): 1820 - 1834 . doi: 10.3788/OPE.20202808.1820 http://dx.doi.org/10.3788/OPE.20202808.1820
WANG W X , ZHAO H . Haze traffic image enhancement based on improved retinex and adaptive fractional differential [J]. Opt. Precision Eng. , 2020 , 28 ( 8 ): 1820 - 1834 . (in Chinese) . doi: 10.3788/OPE.20202808.1820 http://dx.doi.org/10.3788/OPE.20202808.1820
LI B , REN W , FU D , et al . Benchmarking single image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2018 , 28 ( 1 ): 492 - 505 . doi: 10.1109/tip.2018.2867951 http://dx.doi.org/10.1109/tip.2018.2867951
ZHANG H , PATEL V M . Densely connected pyramid dehazing network [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition , 1823,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 3194 - 3203 . doi: 10.1109/cvpr.2018.00337 http://dx.doi.org/10.1109/cvpr.2018.00337
XU Z X , WU K , HUANG L , et al . Cloudy image arithmetic: a cloudy scene synthesis paradigm with an application to deep-learning-based thin cloud removal [J]. IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 16 . doi: 10.1109/tgrs.2021.3122253 http://dx.doi.org/10.1109/tgrs.2021.3122253
0
浏览量
427
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构