浏览全部资源
扫码关注微信
东北石油大学 电气信息工程学学院,黑龙江 大庆 163318
[ "姜春雷(1977-),男,黑龙江青冈人,教授,博士生导师,2006年于大庆石油学院获得硕士学位,2017年于哈尔滨工业大学获得博士学位,主要从事微纳光纤传感器、激光超精密测量与超显微成像等方面的理论及应用研究。 E-mail: jiangchunlei_nepu@163.com" ]
[ "陈 朋(1981-),男,安徽临泉人,博士,讲师,2010年,2015于哈尔滨工业大学分别获得硕士和博士学位,主要从事精密测量、外差激光干涉测量方面的理论及应用研究。E-mail:eq0687@126.com" ]
收稿日期:2022-03-15,
修回日期:2022-04-12,
纸质出版日期:2022-07-10
移动端阅览
姜春雷,水华胜,陈朋等.基于光纤光镊的长距离微粒可控操纵[J].光学精密工程,2022,30(13):1555-1563.
JIANG Chunlei,SHUI Huasheng,CHEN Peng,et al.Controllable manipulation of long-distance microparticles based on fiber optic tweezers[J].Optics and Precision Engineering,2022,30(13):1555-1563.
姜春雷,水华胜,陈朋等.基于光纤光镊的长距离微粒可控操纵[J].光学精密工程,2022,30(13):1555-1563. DOI: 10.37188/OPE.20223013.1555.
JIANG Chunlei,SHUI Huasheng,CHEN Peng,et al.Controllable manipulation of long-distance microparticles based on fiber optic tweezers[J].Optics and Precision Engineering,2022,30(13):1555-1563. DOI: 10.37188/OPE.20223013.1555.
在液体中灵活操纵微粒或细胞,特别是将细胞或微粒运输到指定位置,已经被证明在细胞分析、疾病诊断、药物递送等方面有着至关重要的作用。针对细胞或微粒非接触光学捕获的灵活性受限于光纤光镊操纵距离短的问题,提出了一种结构简单且具有长距离非接触可控操纵微粒的新型光纤光镊。利用加热和拉伸技术制作了类锥形平口光纤探针,980 nm的激光经过光纤探针后会对微粒产生大的散射力,将微粒逐渐推离光纤端口,同时借助反向流体阻力,在不移动光纤探针的情况下通过调节激光器光源的输出功率,对轴向位置上直径为6 µm的聚苯乙烯微粒可以进行长达102.2 µm的可控往返操纵,应用有限元法仿真了光镊的光场强度分布,并采用麦克斯韦应力张量法分析了光镊对微粒的作用力。实验和仿真结果表明,所提出的类锥形平口光镊是可行的。
The flexible manipulation of particles or cells in fluids, particularly the transport of cells or particles to a specified location, has proven to be of vital importance in cell analysis, disease diagnosis, drug delivery, etc. However, the flexibility of contact-free optical capture of cells or particles is clearly insufficient owing to the short operating distance of optical fiber tweezers. Therefore, a novel optical fiber tweezer with a simple structure and controllable long-distance contact-free control of particles is proposed. In this study, a special cone-like flat port fiber probe is fabricated via heating and stretching techniques. A 980 nm laser passing through the fiber probe exerts a large scattering force on the particles, which gradually pushes the particles away from the fiber port. Simultaneously, with the aid of reverse fluid resistance, the output power of the laser light source is adjusted without moving the fiber probe. A polystyrene particle with a diameter of 6 µm in an axial position can be controlled round-trip with a distance of 102.2 µm. The intensity distribution of the optical tweezers is simulated using the finite element method, and the force exerted by the optical tweezers on the particles is analyzed using the Maxwell stress tensor method. The feasibility of the proposed cone-like flat port optical tweezers is verified via both experiments and simulations.
GRIER D G . A revolution in optical manipulation [J]. Nature , 2003 , 424 ( 6950 ): 810 - 816 . doi: 10.1038/nature01935 http://dx.doi.org/10.1038/nature01935
CHIOU P Y , OHTA A T , WU M C . Massively parallel manipulation of single cells and microparticles using optical images [J]. Nature , 2005 , 436 ( 7049 ): 370 - 372 . doi: 10.1038/nature03831 http://dx.doi.org/10.1038/nature03831
YANG A H J , MOORE S D , SCHMIDT B S , et al . Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides [J]. Nature , 2009 , 457 ( 7225 ): 71 - 75 . doi: 10.1038/nature07593 http://dx.doi.org/10.1038/nature07593
赵明雪 , 朱刘昊 , 邵彤彤 , 等 . 非对称动态涡旋光束对酵母菌细胞的光操纵特性 [J]. 液晶与显示 , 2021 , 36 ( 6 ): 841 - 847 . doi: 10.37188/CJLCD.2021-0023 http://dx.doi.org/10.37188/CJLCD.2021-0023
ZHAO M X , ZHU L H , SHAO T T , et al . Optical manipulation characteristics of yeast cells by asymmetric dynamic vortex beams [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 6 ): 841 - 847 . (in Chinese) . doi: 10.37188/CJLCD.2021-0023 http://dx.doi.org/10.37188/CJLCD.2021-0023
林兴磊 , 付文升 , 邹永刚 , 等 . 多局域空心光阱及其光场调控 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 251 - 258 . doi: 10.37188/OPE.20212902.0251 http://dx.doi.org/10.37188/OPE.20212902.0251
LIN X L , FU W SH , ZOU Y G , et al . Multi-bottle beam optical trap and its light field regulation [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 251 - 258 . (in Chinese) . doi: 10.37188/OPE.20212902.0251 http://dx.doi.org/10.37188/OPE.20212902.0251
GUCK J , ANANTHAKRISHNAN R , MAHMOOD H , et al . The optical stretcher: a novel laser tool to micromanipulate cells [J]. Biophysical Journal , 2001 , 81 ( 2 ): 767 - 784 . doi: 10.1016/s0006-3495(01)75740-2 http://dx.doi.org/10.1016/s0006-3495(01)75740-2
JESS P R T , GARCÉS-CHÁVEZ V , SMITH D , et al . Dual beam fibre trap for Raman micro-spectroscopy of single cells [J]. Optics Express , 2006 , 14 ( 12 ): 5779 - 5791 . doi: 10.1364/oe.14.005779 http://dx.doi.org/10.1364/oe.14.005779
LIU Y X , YU M . Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing [J]. Optics Express , 2009 , 17 ( 16 ): 13624 - 13638 . doi: 10.1364/oe.17.013624 http://dx.doi.org/10.1364/oe.17.013624
BRAMBILLA G , MURUGAN G S , WILKINSON J S , et al . Optical manipulation of microspheres along a subwavelength optical wire [J]. Optics Letters , 2007 , 32 ( 20 ): 3041 - 3043 . doi: 10.1364/ol.32.003041 http://dx.doi.org/10.1364/ol.32.003041
ZHANG Y , LI B J . Particle sorting using a subwavelength optical fiber [J]. Laser & Photonics Reviews , 2013 , 7 ( 2 ): 289 - 296 . doi: 10.1002/lpor.201200087 http://dx.doi.org/10.1002/lpor.201200087
LIU Z H , GUO C K , YANG J , et al . Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application [J]. Optics Express , 2006 , 14 ( 25 ): 12510 - 12516 . doi: 10.1364/oe.14.012510 http://dx.doi.org/10.1364/oe.14.012510
MOHANTY S K , MOHANTY K S , BERNS M W . Manipulation of mammalian cells using a single-fiber optical microbeam [J]. Journal of Biomedical Optics , 2008 , 13 ( 5 ): 054049 . doi: 10.1117/1.2983663 http://dx.doi.org/10.1117/1.2983663
YUAN L B , LIU Z H , YANG J , et al . Twin-core fiber optical tweezers [J]. Optics Express , 2008 , 16 ( 7 ): 4559 - 4566 . doi: 10.1364/oe.16.004559 http://dx.doi.org/10.1364/oe.16.004559
GONG Y , YE A Y , WU Y , et al . Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment [J]. Optics Express , 2013 , 21 ( 13 ): 16181 - 16190 . doi: 10.1364/oe.21.016181 http://dx.doi.org/10.1364/oe.21.016181
XIN H B , XU R , LI B J . Optical trapping, driving and arrangement of particles using a tapered fibre probe [J]. Scientific Reports , 2012 , 2 : 818 . doi: 10.1038/srep00818 http://dx.doi.org/10.1038/srep00818
LIU Z H , WANG L , LIANG P B , et al . Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment [J]. Optics Letters , 2013 , 38 ( 14 ): 2617 - 2620 . doi: 10.1364/ol.38.002617 http://dx.doi.org/10.1364/ol.38.002617
GONG Y , HUANG W , LIU Q F , et al . Graded-index optical fiber tweezers with long manipulation length [J]. Optics Express , 2014 , 22 ( 21 ): 25267 - 25276 . doi: 10.1364/oe.22.025267 http://dx.doi.org/10.1364/oe.22.025267
GONG Y , ZHANG C L , LIU Q F , et al . Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity [J]. Optics Express , 2015 , 23 ( 3 ): 3762 - 3769 . doi: 10.1364/oe.23.003762 http://dx.doi.org/10.1364/oe.23.003762
ZHANG C L , GONG Y , LIU Q F , et al . Graded-index fiber enabled strain-controllable optofluidic manipulation [J]. IEEE Photonics Technology Letters , 2016 , 28 ( 3 ): 256 - 259 . doi: 10.1109/lpt.2015.2494583 http://dx.doi.org/10.1109/lpt.2015.2494583
LIU X S , WU Y , XU X H , et al . Bidirectional transport of nanoparticles and cells with a bio-conveyor belt [J]. Small , 2019 , 15 ( 50 ): 1905209 . doi: 10.1002/smll.201905209 http://dx.doi.org/10.1002/smll.201905209
MAMUTI R , FUJI T K , KUDO T . Opto-thermophoretic trapping of micro and nanoparticles with a 2 µm Tm-doped fiber laser [J]. Optics Express , 2021 , 29 ( 23 ): 38314 - 38323 . doi: 10.1364/oe.440866 http://dx.doi.org/10.1364/oe.440866
PENG X L , CHEN Z H , KOLLIPARA P S , et al . Opto-thermoelectric microswimmers [J]. Light: Science & Applications , 2020 , 9 : 141 . doi: 10.1038/s41377-020-00378-5 http://dx.doi.org/10.1038/s41377-020-00378-5
刘炳辉 , 杨立军 , 王扬 . 镀膜光纤探针近场捕获的模拟与实验 [J]. 光学 精密工程 , 2011 , 19 ( 10 ): 2355 - 2365 . doi: 10.3788/ope.20111910.2355 http://dx.doi.org/10.3788/ope.20111910.2355
LIU B H , YANG L J , WANG Y . Simulation and experiments of near-field trapping using metal-coated optical fiber probe [J]. Opt. Precision Eng. , 2011 , 19 ( 10 ): 2355 - 2365 . (in Chinese) . doi: 10.3788/ope.20111910.2355 http://dx.doi.org/10.3788/ope.20111910.2355
SCHMIDT B S , YANG A H , ERICKSON D , et al . Optofluidic trapping and transport on solid core waveguides within a microfluidic device [J]. Optics Express , 2007 , 15 ( 22 ): 14322 - 14334 . doi: 10.1364/oe.15.014322 http://dx.doi.org/10.1364/oe.15.014322
罗昊 . 基于微纳米结构表面的浸润性及液滴蒸发行为的研究 [D]. 西安 : 西北大学 , 2016 .
LUO H . Wetting and Evaporation Dynamics on Micro/nano Structured Surfaces [D]. Xi'an : Northwest University , 2016 . (in Chinese)
李喜乐 , 许文然 , 张攀 . 表面张力法判断亲水性的研究 [J]. 信息记录材料 , 2018 , 19 ( 5 ): 17 - 20 .
LI X L , XU W R , ZHANG P . Research on the determination of hydrophilicity by surface tension method [J]. Information Recording Materials , 2018 , 19 ( 5 ): 17 - 20 . (in Chinese)
FAROOQ U . 基于微流控技术的声表面波片上实验室的研究 [D]. 杭州 : 浙江大学 , 2019 .
FAROOQ U . Study of Surface Acoustic wave Lab on Chip based Microfluidics [D]. Hangzhou : Zhejiang University , 2019 . (in Chinese)
LIU X S , HUANG J B , LI Y C , et al . Optofluidic organization and transport of cell chain [J]. Journal of Biophotonics , 2017 , 10 ( 12 ): 1627 - 1635 . doi: 10.1002/jbio.201600306 http://dx.doi.org/10.1002/jbio.201600306
0
浏览量
788
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构