浏览全部资源
扫码关注微信
1.江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
2.无锡市创凯电气控制设备有限公司,江苏 无锡 214400
[ "郭 峰(1998-),男,湖北麻城人,硕士研究生,2020年于武汉科技大学获得学士学位,主要从事深度学习和目标检测方面的研究。E-mail: guofeng20_20@163.com" ]
[ "朱启兵(1973-),男,安徽合肥人,教授,博士生导师,2006年于东北大学获得博士学位,2009年于江南大学博士后出站,主要从事传感与检测技术、信息感知与智能处理、物联网系统集成方面的研究。E-mail: zhuqib@163.com" ]
收稿日期:2022-03-04,
修回日期:2022-04-02,
纸质出版日期:2022-07-10
移动端阅览
郭峰,朱启兵,黄敏等.基于改进YOLOV4的陶瓷基板瑕疵检测[J].光学精密工程,2022,30(13):1631-1641.
GUO Feng,ZHU Qibing,HUANG Min,et al.Defect detection in ceramic substrate based on improved YOLOV4[J].Optics and Precision Engineering,2022,30(13):1631-1641.
郭峰,朱启兵,黄敏等.基于改进YOLOV4的陶瓷基板瑕疵检测[J].光学精密工程,2022,30(13):1631-1641. DOI: 10.37188/OPE.20223013.1631.
GUO Feng,ZHU Qibing,HUANG Min,et al.Defect detection in ceramic substrate based on improved YOLOV4[J].Optics and Precision Engineering,2022,30(13):1631-1641. DOI: 10.37188/OPE.20223013.1631.
陶瓷基板是半导体元器件的重要基础材料,其瑕疵检测对保证产品质量具有重要的意义。提出了一种基于改进YOLOV4网络的陶瓷基板瑕疵自动检测方法。针对陶瓷基板瑕疵尺寸较小、颜色形状多变以及不同类瑕疵间尺寸变化较大导致的瑕疵检测困难问题,改进的YOLOV4网络通过借鉴Complete Intersection over Union(CIoU)思想优化初始先验框设计,引入基于梯度协调机制的置信度损失函数和十字交叉注意力网络来改善缺陷检测能力。实验结果表明,基于改进YOLOV4的陶瓷基板瑕疵检测方法对于陶瓷基板污染、异物、多金、缺瓷以及损伤这5类瑕疵检测的平均准确性达到98.3%,可满足工业现场对陶瓷基板瑕疵的检测精度要求。
A ceramic substrate is an important basic material for semiconductor components. Detecting defects in it is of great significance for ensuring high product quality. An automatic defect detection method for a ceramic substrate based on the improved YOLOV4 network was proposed in this paper. To ease the difficulty associated with defect detection caused by small defect size, varying color and shape, and large size variation between different kinds of defects in a ceramic substrate, the improved YOLOV4 model optimized the design of the initial prior box by referring to the Complete Intersection over Union (CIoU) idea. The model then introduced the Confidence Loss function based on the Gradient Harmonizing Mechanism (GHM) and CRISS-Cross Attention Net (CCNet) to improve the defect detection ability. The experimental results show that the average accuracy of the detection method based on the improved YOLOV4 model for ceramic substrate defects, including stain, foreign matter, gold edge bulge, ceramic gap and damage, can reach 98.3%. This accuracy meets the industry requirements for the detection accuracy of ceramic substrate defects.
郭波 , 管菊花 , 黄志开 . 基于改进Otsu算法的TFT-LCD点缺陷自动光学检测系统 [J]. 液晶与显示 , 2018 , 33 ( 3 ): 221 - 227 . doi: 10.3788/yjyxs20183303.0221 http://dx.doi.org/10.3788/yjyxs20183303.0221
GUO B , GUAN J H , HUANG ZH K . Automatic optical detection system for TFT-LCD spot-type defect based on improved Otsu algorithm [J]. Chinese Journal of Liquid Crystals and Displays , 2018 , 33 ( 3 ): 221 - 227 . (in Chinese) . doi: 10.3788/yjyxs20183303.0221 http://dx.doi.org/10.3788/yjyxs20183303.0221
周佳艺 , 石照耀 , 南浩轩 , 等 . 面向生产现场的注塑齿轮快速分选检测系统 [J]. 光学 精密工程 , 2020 , 28 ( 9 ): 2017 - 2026 . doi: 10.37188/OPE.20202809.2017 http://dx.doi.org/10.37188/OPE.20202809.2017
ZHOU J Y , SHI ZH Y , NAN H X , et al . Rapid sorting and inspecting system for plastic gears in production site [J]. Opt. Precision Eng. , 2020 , 28 ( 9 ): 2017 - 2026 . (in Chinese) . doi: 10.37188/OPE.20202809.2017 http://dx.doi.org/10.37188/OPE.20202809.2017
CHEN C S , HUANG C L , YEH C W . A hybrid defect detection for in-tray semiconductor chip [J]. The International Journal of Advanced Manufacturing Technology , 2013 , 65 ( 1/2/3/4 ): 43 - 56 . doi: 10.1007/s00170-012-4149-5 http://dx.doi.org/10.1007/s00170-012-4149-5
王宸 , 张秀峰 , 刘超 , 等 . 改进YOLOv3的轮毂焊缝缺陷检测 [J]. 光学 精密工程 , 2021 , 29 ( 8 ): 1942 - 1954 . doi: 10.37188/OPE.20212908.1942 http://dx.doi.org/10.37188/OPE.20212908.1942
WANG CH , ZHANG X F , LIU CH , et al . Detection method of wheel hub weld defects based on the improved YOLOv3 [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1942 - 1954 . (in Chinese) . doi: 10.37188/OPE.20212908.1942 http://dx.doi.org/10.37188/OPE.20212908.1942
伍济钢 , 成远 , 邵俊 , 等 . 面向智能手机玻璃盖板缺陷检测的YOLOv3改进和应用 [J]. 液晶与显示 , 2021 , 36 ( 12 ): 1728 - 1736 . doi: 10.37188/CJLCD.2021-0172 http://dx.doi.org/10.37188/CJLCD.2021-0172
WU J G , CHENG Y , SHAO J , et al . Improvement and application of YOLOv3 for defect detection of smart phone glass covers [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 12 ): 1728 - 1736 . (in Chinese) . doi: 10.37188/CJLCD.2021-0172 http://dx.doi.org/10.37188/CJLCD.2021-0172
楼豪杰 , 郑元林 , 廖开阳 , 等 . 基于Siamese-YOLOv4的印刷品缺陷目标检测 [J]. 计算机应用 , 2021 , 41 ( 11 ): 3206 - 3212 . doi: 10.11772/j.issn.1001-9081.2020121958 http://dx.doi.org/10.11772/j.issn.1001-9081.2020121958
LOU H J , ZHENG Y L , LIAO K Y , et al . Defect target detection for printed matter based on Siamese-YOLOv4 [J]. Journal of Computer Applications , 2021 , 41 ( 11 ): 3206 - 3212 . (in Chinese) . doi: 10.11772/j.issn.1001-9081.2020121958 http://dx.doi.org/10.11772/j.issn.1001-9081.2020121958
孙光民 , 陈佳阳 , 李冰 , 等 . 双尺度网络高分辨率楼面影像微小缺陷检测 [J]. 哈尔滨工程大学学报 , 2021 , 42 ( 2 ): 286 - 293 . doi: 10.11990/jheu.201909096 http://dx.doi.org/10.11990/jheu.201909096
SUN G M , CHEN J Y , LI B , et al . Detection of small defects on a building wall surface from high-resolution images using dual-scale neural networks [J]. Journal of Harbin Engineering University , 2021 , 42 ( 2 ): 286 - 293 . (in Chinese) . doi: 10.11990/jheu.201909096 http://dx.doi.org/10.11990/jheu.201909096
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 6 ): 1137 - 1149 . doi: 10.1109/tpami.2016.2577031 http://dx.doi.org/10.1109/tpami.2016.2577031
HE K M , GKIOXARI G , DOLLÁR P , et al . Mask R-CNN [C]. 2017 IEEE International Conference on Computer Vision . 2229,2017 , Venice, Italy . IEEE , 2017 : 2980 - 2988 . doi: 10.1109/iccv.2017.322 http://dx.doi.org/10.1109/iccv.2017.322
LIU W , ANGUELOV D , ERHAN D , et al . SSD: single shot MultiBox detector [C]. Computer Vision-ECCV 2016 , 2016 : 21 - 37 . doi: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J , FARHADI A . YOLOv3: an incremental improvement [EB/OL]. 2018: arXiv : 1804 .02767[cs.CV]. https://arxiv.org/abs/1804.02767 https://arxiv.org/abs/1804.02767 .
BOCHKOVSKIY A , WANG C Y , LIAO H Y M . YOLOv4: optimal speed and accuracy of object detection [EB/OL]. arXiv preprint arXiv: 2004.10934 , 2020 .
GE Z , LIU S T , WANG F , et al . YOLOX: exceeding YOLO series in 2021 [J]. arXiv preprint arXiv: 2107.08430 , 2021 .
LI B Y , LIU Y , WANG X G . Gradient harmonized single-stage detector [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2019 , 33 : 8577 - 8584 . doi: 10.1609/aaai.v33i01.33018577 http://dx.doi.org/10.1609/aaai.v33i01.33018577
HUANG Z L , WANG X G , WEI Y C , et al . CCNet: criss-cross attention for semantic segmentation [C]. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE , 2019 : 603 - 612 . doi: 10.1109/iccv.2019.00069 http://dx.doi.org/10.1109/iccv.2019.00069
ZHENG Z , WANG P , REN D , et al . Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics , 2021 . doi: 10.1109/tcyb.2021.3095305 http://dx.doi.org/10.1109/tcyb.2021.3095305
KISANTAL M , WOJNA Z , MURAWSKI J , et al . Augmentation for small object detection [C]. 9th International Conference on Advances in Computing and Information Technology (ACITY 2019 ). Aircc Publishing Corporation , 2019. doi: 10.5121/csit.2019.91713 http://dx.doi.org/10.5121/csit.2019.91713
WOO S , PARK J , LEE J Y , et al . Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision . 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
WANG Q L , WU B G , ZHU P F , et al . ECA-net: efficient channel attention for deep convolutional neural networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 11531 - 11539 . doi: 10.1109/cvpr42600.2020.01155 http://dx.doi.org/10.1109/cvpr42600.2020.01155
TAN M X , PANG R M , LE Q V . EfficientDet: scalable and efficient object detection [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 13-19, 2020 , Seattle, WA, USA. IEEE , 2020 : 10778 - 10787 . doi: 10.1109/cvpr42600.2020.01079 http://dx.doi.org/10.1109/cvpr42600.2020.01079
HU J , SHEN L , SUN G . Squeeze-and-excitation networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1823,2018 , Salt Lake City, UT, USA. IEEE , 2018 : 7132 - 7141 . doi: 10.1109/cvpr.2018.00745 http://dx.doi.org/10.1109/cvpr.2018.00745
0
浏览量
1028
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构