浏览全部资源
扫码关注微信
1.西安邮电大学 电子工程学院,陕西 西安 710121
2.西安电子科技大学 电子工程学院,陕西 西安 710071
[ "刘 敬(1975-),女,安徽宿州人,博士,副教授,硕士生导师,2004年,2009年于西安电子科技大学分别获得硕士、博士学位,主要从事高光谱遥感影像光谱特征提取和解混方面的研究。E-mail:zyhalj1975@163.com" ]
[ "李康欣(1996-),女,陕西武功人,硕士研究生,2018年于西安邮电大学获得学士学位,目前主要从事高光谱遥感影像解混和光谱特征提取方面的研究。E-mail:Luminous_lkx@163.com" ]
收稿日期:2022-04-22,
修回日期:2022-05-09,
纸质出版日期:2022-07-25
移动端阅览
刘敬,李康欣,张悠等.多图正则多核非负矩阵分解高光谱图像解混[J].光学精密工程,2022,30(14):1657-1668.
LIU Jing,LI Kangxin,ZHANG You,et al.Multi-graph regularized multi-kernel nonnegative matrix factorization for hyperspectral image unmixing[J].Optics and Precision Engineering,2022,30(14):1657-1668.
刘敬,李康欣,张悠等.多图正则多核非负矩阵分解高光谱图像解混[J].光学精密工程,2022,30(14):1657-1668. DOI: 10.37188/OPE.20223014.1657.
LIU Jing,LI Kangxin,ZHANG You,et al.Multi-graph regularized multi-kernel nonnegative matrix factorization for hyperspectral image unmixing[J].Optics and Precision Engineering,2022,30(14):1657-1668. DOI: 10.37188/OPE.20223014.1657.
针对高光谱遥感图像的非线性解混问题,提出一种多图正则多核非负矩阵分解(MGMKNMF)算法,构造了多核空间中的多图正则项,并基于此构造了包含多核空间的多图正则项、多核权重正则项和多图权重正则项的MGMKNMF目标函数。MGMKNMF可在学习端元与丰度的过程中更新多核权重和多图权重,在合适的多核空间精确构造输入数据的图,解决了图权重和核权重的参数选择的问题。相比核非负矩阵分解(KNMF)的单一核,多核可确定更合适的核空间;相比图正则非负矩阵分解(GNMF)的单一图,多图更准确可靠。2个实测数据集和2个模拟数据集上的实验结果表明MGMKNMF算法是有效的。与GNMF、不含纯像元的核非负矩阵分解、核稀疏非负矩阵分解、基于核的字典剪枝非线性光谱解混、多图正则核非负矩阵分解算法相比,所提MGMKNMF算法在Cuprite和Jasper Ridge真实地物数据集上平均光谱角距离(SAD)值最优,分别为0.092 1和0.097 0;在HAPKE和广义双线性模型模拟数据集上平均SAD最优,分别是0.137 5和0.145 6,均方根误差值表现也最好,分别为0.050 6和0.057 0。
To solve the nonlinear unmixing problem of hyperspectral remote sensing images, a multi-graph regularized multi-kernel nonnegative matrix factorization (MGMKNMF) method is proposed, and the multi-graph regularization term in multi-kernel space is constructed. Moreover, the MGMKNMF objective function, which includes multi-graph in multi-kernel regularization, multi-kernel weights regularization, and multi-graph weights regularization terms, is constructed. MGMKNMF can update the multi-kernel and multi-graph weights during the process of learning endmembers and abundance, and precisely construct the graph of the input data in the appropriate multi-kernel space, thereby solving the problem of selecting the graph and kernel weights. Compared with the single kernel function used in kernel nonnegative matrix factorization (KNMF), multiple kernel functions can determine a more appropriate kernel space. Further, compared with the single graph in graph regularized nonnegative matrix factorization (GNMF), multiple graphs describe the relationship between samples in different ways, which is more accurate and reliable than the single graph. The experimental results with two real measured datasets and two simulated datasets show that the presented MGMKNMF algorithm is effective. Compared with GNMF, non-pure pixels kernel nonnegative matrix factorization kernel sparse non-negative matrix factorization, kernel-based nonlinear spectral unmixing with dictionary pruning methods, and multi-graph regularized kernel nonnegative matrix factorization method, the average spectral angle distance (SAD) values of the proposed MGMKNMF are the best, that is, 0.092 1 and 0.097 0 on the real Cuprite dataset and Jasper ridge dataset, respectively. The average SAD values of MGMKNMF on the Hapke and generalized bilinear model simulated datasets are 0.137 5 and 0.145 6, respectively. Finally, the root mean square error values are 0.050 6 and 0.057 0, respectively.
黄鸿 , 唐玉枭 , 段宇乐 . 半监督多图嵌入的高光谱影像特征提取 [J]. 光学 精密工程 , 2020 , 28 ( 2 ): 443 - 456 .
HUANG H , TANG Y X , DUAN Y L . Feature extraction of hyperspectral image with semi-supervised multi-graph embedding [J]. Opt. Precision Eng. , 2020 , 28 ( 2 ): 443 - 456 . (in Chinese)
黄鸿 , 张臻 , 李政英 . 面向高光谱影像分类的深度流形重构置信网络 [J]. 光学 精密工程 , 2021 , 29 ( 8 ): 1985 - 1998 . doi: 10.37188/OPE.20212908.1985 http://dx.doi.org/10.37188/OPE.20212908.1985
HUANG H , ZHANG Z , LI Z Y . Deep manifold reconstruction belief network for hyperspectral remote sensing image classification [J]. Opt. Precision Eng. , 2021 , 29 ( 8 ): 1985 - 1998 . (in Chinese) . doi: 10.37188/OPE.20212908.1985 http://dx.doi.org/10.37188/OPE.20212908.1985
张少磊 , 付光远 , 汪洪桥 , 等 . 基于向量总变差约束局部光谱解混的高光谱图像超分辨 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2683 - 2692 . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
ZHANG S L , FU G Y , WANG H Q , et al . Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution [J]. Opt. Precision Eng. , 2019 , 27 ( 12 ): 2683 - 2692 . (in Chinese) . doi: 10.3788/ope.20192712.2683 http://dx.doi.org/10.3788/ope.20192712.2683
IBARROLA-ULZURRUN E , DRUMETZ L , MARCELLO J , et al . Hyperspectral classification through unmixing abundance maps addressing spectral variability [J]. IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 7 ): 4775 - 4788 . doi: 10.1109/tgrs.2019.2892903 http://dx.doi.org/10.1109/tgrs.2019.2892903
吴银花 , 王鹏冲 , 吴慎将 , 等 . 针对高光谱端元提取的空谱联合预处理方法 [J]. 液晶与显示 , 2020 , 35 ( 9 ): 955 - 964 . doi: 10.37188/YJYXS20203509.0955 http://dx.doi.org/10.37188/YJYXS20203509.0955
WU Y H , WANG P C , WU S J , et al . Spatial-spectral combined preprocessing method for hyperspectral endmember extraction [J]. Chinese Journal of Liquid Crystals and Displays , 2020 , 35 ( 9 ): 955 - 964 . (in Chinese) . doi: 10.37188/YJYXS20203509.0955 http://dx.doi.org/10.37188/YJYXS20203509.0955
ZHANG S Q , ZHANG G R , LI F , et al . Spectral-spatial hyperspectral unmixing using nonnegative matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 13 . doi: 10.1109/tgrs.2021.3074364 http://dx.doi.org/10.1109/tgrs.2021.3074364
NASCIMENTO J M P , DIAS J M B . Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing , 2005 , 43 ( 4 ): 898 - 910 . doi: 10.1109/tgrs.2005.844293 http://dx.doi.org/10.1109/tgrs.2005.844293
CHAN T H , CHI C Y , HUANG Y M , et al . A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing [J]. IEEE Transactions on Signal Processing , 2009 , 57 ( 11 ): 4418 - 4432 . doi: 10.1109/tsp.2009.2025802 http://dx.doi.org/10.1109/tsp.2009.2025802
NASCIMENTO J M P , DIAS J M B . Does independent component analysis play arole in unmixing hyperspectral data? [J]. IEEE Transactions on Geoscience and Remote Scensing , 2005 , 43 ( 1 ): 175 - 187 . doi: 10.1109/tgrs.2004.839806 http://dx.doi.org/10.1109/tgrs.2004.839806
石悦 , 王宏琦 , 郭新毅 . 基于丰度分布约束的NMF端元生成方法 [J]. 中国科学院大学学报 , 2020 , 37 ( 4 ): 547 - 552 . doi: 10.7523/j.issn.2095-6134.2020.04.015 http://dx.doi.org/10.7523/j.issn.2095-6134.2020.04.015
SHI Y , WANG H Q , GUO X Y . NMF endmember generation method based on abundance distribution constraint [J]. Journal of University of Chinese Academy of Sciences , 2020 , 37 ( 4 ): 547 - 552 . (in Chinese) . doi: 10.7523/j.issn.2095-6134.2020.04.015 http://dx.doi.org/10.7523/j.issn.2095-6134.2020.04.015
YANG S Y , ZHANG X T , YAO Y G , et al . Geometric nonnegative matrix factorization (GNMF) for hyperspectral unmixing [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2015 , 8 ( 6 ): 2696 - 2703 . doi: 10.1109/jstars.2015.2417574 http://dx.doi.org/10.1109/jstars.2015.2417574
SHU Z Q , WU X J , FAN H H , et al . Parameter-less Auto-weighted multiple graph regularized Nonnegative Matrix Factorization for data representation [J]. Knowledge-Based Systems , 2017 , 131 : 105 - 112 . doi: 10.1016/j.knosys.2017.05.029 http://dx.doi.org/10.1016/j.knosys.2017.05.029
GAO L R , WANG Z C , ZHUANG L N , et al . Using low-rank representation of abundance maps and nonnegative tensor factorization for hyperspectral nonlinear unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 17 . doi: 10.1109/tgrs.2021.3065990 http://dx.doi.org/10.1109/tgrs.2021.3065990
PENG J T , ZHOU Y C , SUN W W , et al . Self-paced nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing , 2021 , 59 ( 2 ): 1501 - 1515 . doi: 10.1109/tgrs.2020.2996688 http://dx.doi.org/10.1109/tgrs.2020.2996688
LU X Q , WU H , YUAN Y . Double constrained NMF for hyperspectral unmixing [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 5 ): 2746 - 2758 . doi: 10.1109/tgrs.2013.2265322 http://dx.doi.org/10.1109/tgrs.2013.2265322
PILARIO K E S , CAO Y , SHAFIEE M . A kernel design approach to improve kernel subspace identification [J]. IEEE Transactions on Industrial Electronics , 2021 , 68 ( 7 ): 6171 - 6180 . doi: 10.1109/tie.2020.2996142 http://dx.doi.org/10.1109/tie.2020.2996142
LIU J , ZHANG Y , LIU Y , et al . Hyperspectral images unmixing based on abundance constrained multi-layer KNMF [J]. IEEE Access , 9 : 91080 - 91090 . doi: 10.3390/rs8060464 http://dx.doi.org/10.3390/rs8060464
YAO J Y , WANG H Q , FU G Y , et al . Hyperspectral image unmixing method based on multiple kernel graph non-negative matrix factorization [J]. Journal of Physics: Conference Series , 2020 , 1693 ( 1 ): 012149 . doi: 10.1088/1742-6596/1693/1/012149 http://dx.doi.org/10.1088/1742-6596/1693/1/012149
杨斌 , 王斌 , 吴宗敏 . 基于双线性混合模型的高光谱图像非线性光谱解混 [J]. 红外与毫米波学报 , 2018 , 37 ( 5 ): 631 - 641 . doi: 10.3390/rs10050801 http://dx.doi.org/10.3390/rs10050801
YANG B , WANG B , WU Z M . Nonlinear spectral unmixing for hyperspectral imagery based on bilinear mixture models [J]. Journal of Infrared and Millimeter Waves , 2018 , 37 ( 5 ): 631 - 641 . (in Chinese) . doi: 10.3390/rs10050801 http://dx.doi.org/10.3390/rs10050801
QIN K , GE F Y , ZHAO Y J , et al . Hapke data augmentation for deep learning-based hyperspectral data analysis with limited samples [J]. IEEE Geoscience and Remote Sensing Letters , 2021 , 18 ( 5 ): 886 - 890 . doi: 10.1109/lgrs.2020.2989796 http://dx.doi.org/10.1109/lgrs.2020.2989796
SEUNG D , LEE L . Algorithms for Non-Negative Matrix Factorization [J], Advances in Neural Information Processing Systems , 2001 , 13 : 556 - 562 .
CAI D , HE X F , HAN J W , et al . Graph regularized nonnegative matrix factorization for data representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 8 ): 1548 - 1560 . doi: 10.1109/tpami.2010.231 http://dx.doi.org/10.1109/tpami.2010.231
MAURI G R , LORENA L A N . Improving a Lagrangian decomposition for the unconstrained binary quadratic programming problem [J]. Computers & Operations Research , 2012 , 39 ( 7 ): 1577 - 1581 . doi: 10.1016/j.cor.2011.09.008 http://dx.doi.org/10.1016/j.cor.2011.09.008
0
浏览量
538
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构