浏览全部资源
扫码关注微信
石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
[ "张云佐(1984-),男,河北石家庄人,博士,副教授,博士生导师,2016年于北京理工大学获博士学位,现为石家庄铁道大学信息科学与技术学院副教授,主要从事图像处理、智能视频分析、大数据方面的研究。E-mail: zyz2016@stdu.edu.cn" ]
[ "李文博(1995-),男,河北张家口人,硕士研究生,2019年于河北科技师范学院获学士学位,主要从事视频分析,模式识别方面的研究。E-mail: wenbo@stdu.edu.cn" ]
收稿日期:2022-04-19,
修回日期:2022-04-27,
纸质出版日期:2022-07-25
移动端阅览
张云佐,李文博,郭威等.面向多元场景的轻量级行人检测[J].光学精密工程,2022,30(14):1764-1774.
ZHANG Yunzuo,LI Wenbo,GUO Wei,et al.Lightweight pedestrian detection for multiple scenes[J].Optics and Precision Engineering,2022,30(14):1764-1774.
张云佐,李文博,郭威等.面向多元场景的轻量级行人检测[J].光学精密工程,2022,30(14):1764-1774. DOI: 10.37188/OPE.20223014.1764.
ZHANG Yunzuo,LI Wenbo,GUO Wei,et al.Lightweight pedestrian detection for multiple scenes[J].Optics and Precision Engineering,2022,30(14):1764-1774. DOI: 10.37188/OPE.20223014.1764.
多元场景中行人检测是当前计算机视觉领域的研究热点,尽管备受关注的深度学习能够提供很高的检测精度,但随之而来的高复杂度运算严重限制了其在可移动平台上的部署。为此,本文提出了一种面向多元场景的轻量级行人检测算法。该算法首先构建深、浅层特征融合网络以学习多尺度行人的纹理特性;然后设计了跨维特征引导注意力模块,用于保留特征提取过程中通道间、空间内的交互信息。最后基于剪枝策略去除模型中的冗余通道,以降低算法复杂度。此外,本文还设计了自适应Gamma矫正算法,以消减多元场景下光照、阴影等外界干扰对检测结果的影响。实验结果表明,本文所提方法在检测精度相当的条件下,能将模型大小压缩至10 MB,处理速度可达93 Frame/s,明显优于当前主流方法。
Currently, pedestrian detection in multiple scenes is a research hotspot in the field of computer vision. Deep learning has attracted considerable attention and can provide high detection accuracy; however, the subsequent high-complexity operations seriously limit its application on mobile platforms. To address this problem, this paper proposes a lightweight pedestrian detection algorithm for multiple scenes. Firstly, a deep and shallow feature fusion network is constructed to learn the texture features of multi-scale pedestrians. Secondly, a cross-dimensional feature-guided attention module is designed to retain the interactive information between channels and spaces in the process of feature extraction. Finally, the redundant channels in the model are trimmed using the pruning strategy, to reduce the algorithm complexity. In addition, an adaptive Gamma correction algorithm is designed to reduce the influence of external disturbances, such as illumination and shadows, on the detection results of multiple scenes. The experimental results show that the proposed method can compress the model volume to 10 MB, and the processing speed can reach 93 Frame/s while achieving similar detection accuracy, which outperforms the current mainstream methods.
YADAV R P , SENTHAMILARASU V , KUTTY K , et al . Implementation of robust HOG-SVM based pedestrian classification [J]. International Journal of Computer Applications , 2015 , 114 ( 19 ): 10 - 16 . doi: 10.5120/20084-2026 http://dx.doi.org/10.5120/20084-2026
SABZMEYDANI P , MORI G . Detecting pedestrians by learning shapelet features [C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition . 1722,2007 , Minneapolis , MN , USA . IEEE , 2007 : 1 - 8 . doi: 10.1109/cvpr.2007.383134 http://dx.doi.org/10.1109/cvpr.2007.383134
CAO J , PANG Y , XIE J , et al . From handcrafted to deep features for pedestrian detection: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 . doi: 10.1109/tpami.2021.3076733 http://dx.doi.org/10.1109/tpami.2021.3076733
CAI Z , FAN Q , FERIS R S , et al . A unified multi-scale deep convolutional neural network for fast object detection [C]. European conference on computer Vision. Springer , Cham , 2016 : 354 - 370 . doi: 10.1007/978-3-319-46493-0_22 http://dx.doi.org/10.1007/978-3-319-46493-0_22
YANG P Y , ZHANG G F , WANG L , et al . A part-aware multi-scale fully convolutional network for pedestrian detection [J]. IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 2 ): 1125 - 1137 . doi: 10.1109/tits.2019.2963700 http://dx.doi.org/10.1109/tits.2019.2963700
邹梓吟 , 盖绍彦 , 达飞鹏 , 等 . 基于注意力机制的遮挡行人检测算法 [J]. 光学学报 , 2021 , 41 ( 15 ): 1515001 . doi: 10.3788/aos202141.1515001 http://dx.doi.org/10.3788/aos202141.1515001
ZOU Z Y , GAI S Y , DA F P , et al . Occluded pedestrian detection algorithm based on attention mechanism [J]. Acta Optica Sinica , 2021 , 41 ( 15 ): 1515001 . (in Chinese) . doi: 10.3788/aos202141.1515001 http://dx.doi.org/10.3788/aos202141.1515001
WU J L , ZHOU C L , YANG M , et al . Temporal-context enhanced detection of heavily occluded pedestrians [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1319,2020 , Seattle, WA, USA. IEEE , 2020 : 13427 - 13436 . doi: 10.1109/cvpr42600.2020.01344 http://dx.doi.org/10.1109/cvpr42600.2020.01344
时小虎 , 吴佳琦 , 吴春国 , 等 . 基于残差网络的弯道增强车道线检测方法 [J/OL]. 吉林大学学报(工学版) : 1 - 9 . [ 2022-04-02 ]. DOI: 10.13229/j.cnki.jdxbgxb20210618 http://dx.doi.org/10.13229/j.cnki.jdxbgxb20210618 .
SHI X H , WU J Q , WU C G , et al . Residual network based curve enhanced lane detection method [J/OL]. Journal of Jilin University(Engineering and Technology Edition) : 1 - 9 . [ 2022-04-02 ]. DOI: 10.13229/j.cnki.jdxbgxb20210618. http://dx.doi.org/10.13229/j.cnki.jdxbgxb20210618. (in Chinese)
GE Z , LIU S , WANG F , et al . Yolox: Exceeding yolo series in 2021 [J]. arXiv preprint arXiv : 2017 ,08430, 2021 .
HOU Q B , ZHOU D Q , FENG J S . Coordinate attention for efficient mobile network design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2025,2021 , Nashville, TN, USA. IEEE , 2021 : 13708 - 13717 . doi: 10.1109/cvpr46437.2021.01350 http://dx.doi.org/10.1109/cvpr46437.2021.01350
LIU Z , LI J G , SHEN Z Q , et al . Learning efficient convolutional networks through network slimming [C]. 2017 IEEE International Conference on Computer Vision . 2229,2017 , Venice, Italy . IEEE , 2017 : 2755 - 2763 . doi: 10.1109/iccv.2017.298 http://dx.doi.org/10.1109/iccv.2017.298
任彬 , 王宇庆 , 丛振 , 等 . 基于MPSOC的航空图像目标检测系统设计 [J]. 液晶与显示 , 2021 , 36 ( 7 ): 1006 - 1017 . doi: 10.37188/CJLCD.2020-0310 http://dx.doi.org/10.37188/CJLCD.2020-0310
REN B , WANG Y Q , CONG Z , et al . Design of aerial image target detection system based on MPSOC [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 7 ): 1006 - 1017 . (in Chinese) . doi: 10.37188/CJLCD.2020-0310 http://dx.doi.org/10.37188/CJLCD.2020-0310
周经美 , 王钰 , 宁航 , 等 . 面向多元场景结合GLNet的车道线检测算法 [J]. 中国公路学报 , 2021 , 34 ( 7 ): 118 - 127 . doi: 10.3969/j.issn.1001-7372.2021.07.010 http://dx.doi.org/10.3969/j.issn.1001-7372.2021.07.010
ZHOU J M , WANG Y , NING H , et al . Lane detection algorithm based on GLNet for multiple scenes [J]. China Journal of Highway and Transport , 2021 , 34 ( 7 ): 118 - 127 . (in Chinese) . doi: 10.3969/j.issn.1001-7372.2021.07.010 http://dx.doi.org/10.3969/j.issn.1001-7372.2021.07.010
BABAKHANI P , ZAREI P . Automatic gamma correction based on average of brightness [J]. Advances in Computer Science: an International Journal , 2015 , 4 ( 6 ): 156 - 159 .
WANG S G , CHENG J , LIU H J , et al . PCN: part and context information for pedestrian detection with CNNs [J]. arXiv preprint arXiv : 1804.04483 , 2018 . doi: 10.5244/c.31.34 http://dx.doi.org/10.5244/c.31.34
0
浏览量
618
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构