浏览全部资源
扫码关注微信
1.昆明理工大学 机电工程学院,云南 昆明 650500
2.昆明理工大学 云南省先进装备智能控制及应用国际联合实验室,云南 昆明 650500
[ "高贯斌(1979-),男,山东菏泽人,博士,教授,博士生导师,2001年、2004年于东北大学分别获得学士、硕士学位,2010年于浙江大学获得博士学位,主要研究方向为机器人学、精密测量与控制、智能康复外骨骼。E-mail:gbgao@kust.edu.cn" ]
[ "刘 飞(1991-),男,河南商丘人,博士研究生,2015年于河南理工大学获得学士学位,2018年于昆明理工获得硕士学位,主要研究方向为机器人学、精密测量与控制。E-mail:feiliu2017@foxmail.com" ]
收稿日期:2022-04-05,
修回日期:2022-05-10,
纸质出版日期:2022-08-25
移动端阅览
高贯斌,牛锦鹏,刘飞等.基于各向异性误差相似度的六自由度机器人定位误差补偿[J].光学精密工程,2022,30(16):1955-1967.
GAO Guanbin,NIU Jinpeng,LIU Fei,et al.Positioning error compensation of 6-DOF robots based on anisotropic error similarity[J].Optics and Precision Engineering,2022,30(16):1955-1967.
高贯斌,牛锦鹏,刘飞等.基于各向异性误差相似度的六自由度机器人定位误差补偿[J].光学精密工程,2022,30(16):1955-1967. DOI: 10.37188/OPE.20223016.1955.
GAO Guanbin,NIU Jinpeng,LIU Fei,et al.Positioning error compensation of 6-DOF robots based on anisotropic error similarity[J].Optics and Precision Engineering,2022,30(16):1955-1967. DOI: 10.37188/OPE.20223016.1955.
多关节机器人的绝对定位精度远低于重复精度,目前通常采用运动学标定或空间误差补偿来提高机器人定位精度。空间误差补偿通常采用反距离加权来预测定位点的误差并进行补偿,但反距离加权的权值评价单一且各参考点权值过于平均限制了补偿精度的提高,为此,本文基于空间误差相似度提出一种包含距离和方向的定位误差预测和补偿方法。首先,推导出机器人定位误差模型,将机器人工作空间划分为由若干立方体组成的网格,研究在空间网格中定位点与参考点的相对方向与误差相似度的关系,并构建以距离和夹角余弦为误差传递因子的误差传递函数。其次,考虑定位点各坐标轴方向误差和参考点误差的相似性存在较大差异,基于误差传递函数提出一种各向异性的相似度建模和误差补偿方法,利用网格中各参考点的误差分别计算定位点各方向的误差。最后,通过实验对所提方法进行验证,并与传统的反距离加权插值补偿方法进行对比,实验结果表明:经过误差补偿后,机器人定位误差在各坐标轴方向的最大值和平均值都有显著降低,误差最大值和均值由补偿前的1.03 mm和0.30 mm分别降至0.11 mm和0.04 mm,与反距离加权方法相比补偿后机器人定位精度更高、各方向更均匀。
The positioning accuracy of multi-joint robots is much lower than the repetition accuracy. Currently, kinematic calibration and spatial error compensation are the primary techniques adopted to improve robot positioning accuracy. In spatial error compensation, inverse distance weighting is typically used to predict the error of a positioning point. However, as a single weight, the inverse distance cannot accurately represent the influence of each grid point because the weight is too average, resulting in a poor compensation result. To improve the positioning accuracy of robots, a positioning prediction and compensation method, including distance and orientation, is proposed based on error similarity. First, a positioning error model is derived from the kinematic model using differential kinematic theory, and then, the relationship between joint angles and the positioning error is analyzed. The robot workspace is divided into a grid of several cubes, and the effect of the direction of the positioning point relative to the reference point on error similarity is investigated. The error transfer function is then derived using the cosine of the included angle and the distance as the error transfer factor. Second, a method for anisotropic similarity modeling and error compensation is proposed based on an error transfer function that uses the error of reference points to calculate the error of the positioning point. The proposed method is verified through experiments and compared with the traditional inverse distance weighting method. After compensation, the maximum and average positioning errors of the robot decrease significantly along all directions, as demonstrated by the experimental results. The maximum and average errors along x-, y-, and z-directions decrease from 1.03 mm and 0.30 mm to 0.11 mm and 0.04 mm, respectively. Furthermore, the proposed method provides greater compensation accuracy than the traditional inverse distance weighting method.
周炜 , 廖文和 , 田威 , 等 . 面向飞机自动化装配的机器人空间网格精度补偿方法研究 [J]. 中国机械工程 , 2012 , 23 ( 19 ): 2306 - 2311 . doi: 10.3969/j.issn.1004-132X.2012.19.008 http://dx.doi.org/10.3969/j.issn.1004-132X.2012.19.008
ZHOU W , LIAO W H , TIAN W , et al . Robot accuracy compensation method of spatial grid for aircraft automatic assembly [J]. China Mechanical Engineering , 2012 , 23 ( 19 ): 2306 - 2311 . (in Chinese) . doi: 10.3969/j.issn.1004-132X.2012.19.008 http://dx.doi.org/10.3969/j.issn.1004-132X.2012.19.008
CHEN C , PENG F Y , YAN R , et al . Stiffness performance index based posture and feed orientation optimization in robotic milling process [J]. Robotics and Computer-Integrated Manufacturing , 2019 , 55 : 29 - 40 . doi: 10.1016/j.rcim.2018.07.003 http://dx.doi.org/10.1016/j.rcim.2018.07.003
SUN T , LIU C Y , LIAN B B , et al . Calibration for precision kinematic control of an articulated serial robot [J]. IEEE Transactions on Industrial Electronics , 2021 , 68 ( 7 ): 6000 - 6009 . doi: 10.1109/tie.2020.2994890 http://dx.doi.org/10.1109/tie.2020.2994890
花芳芳 , 田威 , 胡俊山 , 等 . 基于深度神经网络的机器人定位误差补偿方法 [J]. 航空制造技术 , 2020 , 63 ( 17 ): 78 - 85 . doi: 10.1109/cac51589.2020.9327212 http://dx.doi.org/10.1109/cac51589.2020.9327212
HUA F F , TIAN W , HU J S , et al . Robot positioning error compensation method based on deep neural network [J]. Aeronautical Manufacturing Technology , 2020 , 63 ( 17 ): 78 - 85 . (in Chinese) . doi: 10.1109/cac51589.2020.9327212 http://dx.doi.org/10.1109/cac51589.2020.9327212
YANG P , GUO Z G , KONG Y B . Plane kinematic calibration method for industrial robot based on dynamic measurement of double ball bar [J]. Precision Engineering , 2020 , 62 : 265 - 272 . doi: 10.1016/j.precisioneng.2019.12.010 http://dx.doi.org/10.1016/j.precisioneng.2019.12.010
李广云 , 罗豪龙 , 王力 . 机器人工具坐标系的快速标定方法 [J]. 光学 精密工程 , 2021 , 29 ( 6 ): 1375 - 1386 . doi: 10.37188/OPE.20212906.1375 http://dx.doi.org/10.37188/OPE.20212906.1375
LI G Y , LUO H L , WANG L . Fast calibration method of robot tool coordinate [J]. Opt. Precision Eng. , 2021 , 29 ( 6 ): 1375 - 1386 . (in Chinese) . doi: 10.37188/OPE.20212906.1375 http://dx.doi.org/10.37188/OPE.20212906.1375
于连栋 , 曹家铭 , 赵会宁 , 等 . 关节臂式坐标测量机的运动学建模 [J]. 光学 精密工程 , 2021 , 29 ( 11 ): 2603 - 2612 . doi: 10.37188/OPE.20212911.2603 http://dx.doi.org/10.37188/OPE.20212911.2603
YU L D , CAO J M , ZHAO H N , et al . Kinematics model of articulated arm measuring machine [J]. Opt. Precision Eng. , 2021 , 29 ( 11 ): 2603 - 2612 . (in Chinese) . doi: 10.37188/OPE.20212911.2603 http://dx.doi.org/10.37188/OPE.20212911.2603
GAN Y H , DUAN J J , DAI X Z . A calibration method of robot kinematic parameters by drawstring displacement sensor [J]. International Journal of Advanced Robotic Systems , 2019 , 16 ( 5 ): 172988141988307 . doi: 10.1177/1729881419883072 http://dx.doi.org/10.1177/1729881419883072
GROTJAHN M , DAEMI M , HEIMANN B . Friction and rigid body identification of robot dynamics [J]. International Journal of Solids and Structures , 2001 , 38 ( 10/11/12/13 ): 1889 - 1902 . doi: 10.1016/s0020-7683(00)00141-4 http://dx.doi.org/10.1016/s0020-7683(00)00141-4
JIANG Z H , ZHOU W G , LI H , et al . A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm [J]. IEEE Transactions on Industrial Electronics , 2018 , 65 ( 4 ): 3337 - 3345 . doi: 10.1109/tie.2017.2748058 http://dx.doi.org/10.1109/tie.2017.2748058
乔贵方 , 吕仲艳 , 张颖 , 等 . 基于BAS-PSO算法的机器人定位精度提升 [J]. 光学 精密工程 , 2021 , 29 ( 4 ): 763 - 771 . doi: 10.37188/OPE.20212904.0763 http://dx.doi.org/10.37188/OPE.20212904.0763
QIAO G F , LÜ Z Y , ZHANG Y , et al . Improvement of robot kinematic accuracy based on BAS-PSO algorithm [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 763 - 771 . (in Chinese) . doi: 10.37188/OPE.20212904.0763 http://dx.doi.org/10.37188/OPE.20212904.0763
TOQUICA J S , MOTTA J M S T . A methodology for industrial robot calibration based on measurement sub-regions [J]. The International Journal of Advanced Manufacturing Technology , 2022 , 119 ( 1/2 ): 1199 - 1216 . doi: 10.1007/s00170-021-08308-4 http://dx.doi.org/10.1007/s00170-021-08308-4
LUO G Y , ZOU L , WANG Z L , et al . A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and Differential Evolution hybrid algorithm [J]. Robotics and Computer-Integrated Manufacturing , 2021 , 71 : 102165 . doi: 10.1016/j.rcim.2021.102165 http://dx.doi.org/10.1016/j.rcim.2021.102165
HE L Y , LI Q C , ZHU X B , et al . Kinematic calibration of a three degrees-of-freedom parallel manipulator with a laser tracker [J]. Journal of Dynamic Systems, Measurement, and Control , 2019 , 141 ( 3 ): 1 - 10 . doi: 10.1115/1.4041749 http://dx.doi.org/10.1115/1.4041749
曾远帆 . 基于空间相似性的工业机器人定位精度补偿技术研究 [D]. 南京 : 南京航空航天大学 , 2017 .
ZENG Y F . Positional Error Compensation Technology for Industrial Robot Based on Spatial Similarity [D]. Nanjing : Nanjing University of Aeronautics and Astronautics , 2017 . (in Chinese)
WANG W , TIAN W , LIAO W H , et al . Error compensation of industrial robot based on deep belief network and error similarity [J]. Robotics and Computer-Integrated Manufacturing , 2022 , 73 : 102220 . doi: 10.1016/j.rcim.2021.102220 http://dx.doi.org/10.1016/j.rcim.2021.102220
CHEN D D , WANG T M , YUAN P J , et al . A positional error compensation method for industrial robots combining error similarity and radial basis function neural network [J]. Measurement Science and Technology , 2019 , 30 ( 12 ): 125010 . doi: 10.1088/1361-6501/ab3311 http://dx.doi.org/10.1088/1361-6501/ab3311
WANG W , TIAN W , LIAO W H , et al . Pose accuracy compensation of mobile industry robot with binocular vision measurement and deep belief network [J]. Optik , 2021 , 238 : 166716 . doi: 10.1016/j.ijleo.2021.166716 http://dx.doi.org/10.1016/j.ijleo.2021.166716
XUE J , QIU Z R , FANG L , et al . Angular measurement of high precision reducer for industrial robot [J]. IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 10 . doi: 10.1109/tim.2020.3028887 http://dx.doi.org/10.1109/tim.2020.3028887
周炜 , 廖文和 , 田威 . 基于空间插值的工业机器人精度补偿方法理论与试验 [J]. 机械工程学报 , 2013 , 49 ( 3 ): 42 - 48 . doi: 10.3901/jme.2013.03.042 http://dx.doi.org/10.3901/jme.2013.03.042
ZHOU W , LIAO W H , TIAN W . Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation [J]. Journal of Mechanical Engineering , 2013 , 49 ( 3 ): 42 - 48 . (in Chinese) . doi: 10.3901/jme.2013.03.042 http://dx.doi.org/10.3901/jme.2013.03.042
高贯斌 , 张石文 , 那靖 , 等 . 基于标定和关节空间插值的工业机器人轨迹误差补偿 [J]. 机械工程学报 , 2021 , 57 ( 21 ): 55 - 67 . doi: 10.3901/jme.2021.21.055 http://dx.doi.org/10.3901/jme.2021.21.055
GAO G B , ZHANG S W , NA J , et al . Compensation of trajectory error for industrial robots by interpolation and calibration method in the joint space [J]. Journal of Mechanical Engineering , 2021 , 57 ( 21 ): 55 - 67 . (in Chinese) . doi: 10.3901/jme.2021.21.055 http://dx.doi.org/10.3901/jme.2021.21.055
CAO S M , CHENG Q L , GUO Y J , et al . Pose error compensation based on joint space division for 6-DOF robot manipulators [J]. Precision Engineering , 2022 , 74 : 195 - 204 . doi: 10.1016/j.precisioneng.2021.11.010 http://dx.doi.org/10.1016/j.precisioneng.2021.11.010
石章虎 , 何晓煦 , 曾德标 , 等 . 基于误差相似性的移动机器人定位误差补偿 [J]. 航空学报 , 2020 , 41 ( 11 ): 424105 . doi: 10.7527/S1000-6893.2020.24105 http://dx.doi.org/10.7527/S1000-6893.2020.24105
SHI Z H , HE X X , ZENG D B , et al . Error compensation method for mobile robot positioning based on error similarity [J]. Acta Aeronautica et Astronautica Sinica , 2020 , 41 ( 11 ): 424105 . (in Chinese) . doi: 10.7527/S1000-6893.2020.24105 http://dx.doi.org/10.7527/S1000-6893.2020.24105
XIAO P F , JU H H , LI Q D , et al . A new fixed axis-invariant based calibration approach to improve absolute positioning accuracy of manipulators [J]. IEEE Access , 2020 , 8 : 134224 - 134232 . doi: 10.1109/access.2020.3011328 http://dx.doi.org/10.1109/access.2020.3011328
CHEN T Y , LIN J S , WU D Y , et al . Research of calibration method for industrial robot based on error model of position [J]. Applied Sciences , 2021 , 11 ( 3 ): 1287 . doi: 10.3390/app11031287 http://dx.doi.org/10.3390/app11031287
CHO Y , DO H M , CHEONG J . Screw based kinematic calibration method for robot manipulators with joint compliance using circular point analysis [J]. Robotics and Computer-Integrated Manufacturing , 2019 , 60 : 63 - 76 . doi: 10.1016/j.rcim.2018.08.001 http://dx.doi.org/10.1016/j.rcim.2018.08.001
赵京 , 王鑫 , 张自强 , 等 . 基于肘部自运动的主从异构7自由度机械臂运动映射及其几何逆解 [J]. 机械工程学报 , 2020 , 56 ( 15 ): 181 - 190 . doi: 10.3901/jme.2020.15.181 http://dx.doi.org/10.3901/jme.2020.15.181
ZHAO J , WANG X , ZHANG Z Q , et al . Master-slave 7-DOF manipulator motion mapping based on elbow self-motion and its analytical geometric inverse kinematics [J]. Journal of Mechanical Engineering , 2020 , 56 ( 15 ): 181 - 190 . (in Chinese) . doi: 10.3901/jme.2020.15.181 http://dx.doi.org/10.3901/jme.2020.15.181
张栩曼 , 张中哲 , 王燕波 , 等 . 基于空间六自由度机械臂的逆运动学数值解法 [J]. 导弹与航天运载技术 , 2016 ( 3 ): 81 - 84 . doi: 10.7654/j.issn.1004-7182.20160319 http://dx.doi.org/10.7654/j.issn.1004-7182.20160319
ZHANG X M , ZHANG Z Z , WANG Y B , et al . Inverse kinematical numerical method based on 6-DOF space manipulator [J]. Missiles and Space Vehicles , 2016 ( 3 ): 81 - 84 . (in Chinese) . doi: 10.7654/j.issn.1004-7182.20160319 http://dx.doi.org/10.7654/j.issn.1004-7182.20160319
张宏伟 . 基于距离的工业机器人运动学标定及误差补偿 [D]. 昆明 : 昆明理工大学 , 2019 . doi: 10.22266/ijies2013.0331.03 http://dx.doi.org/10.22266/ijies2013.0331.03
ZHANG H W . Research on Kinematics Calibration and Error Compensation of Industrial Robots Based on Distance [D]. Kunming : Kunming University of Science and Technology , 2019 . (in Chinese) . doi: 10.22266/ijies2013.0331.03 http://dx.doi.org/10.22266/ijies2013.0331.03
ZENG Y F , TIAN W , LIAO W H . Positional error similarity analysis for error compensation of industrial robots [J]. Robotics and Computer-Integrated Manufacturing , 2016 , 42 : 113 - 120 . doi: 10.1016/j.rcim.2016.05.011 http://dx.doi.org/10.1016/j.rcim.2016.05.011
0
浏览量
1174
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构