浏览全部资源
扫码关注微信
1.西安理工大学 计算机科学与工程学院,陕西 西安 710048
2.陕西省网络计算与安全技术重点实验室,陕西 西安 710048
[ "郝 雯(1986-),女,河南平顶山人,博士,副教授,2014年于西安理工大学获得博士学位,现为西安理工大学计算机科学与工程学院教师,主要从事点云场景识别、点云场景分割等方面的研究。E-mail: haowensxsf@163.com" ]
收稿日期:2021-11-27,
修回日期:2022-01-11,
纸质出版日期:2022-08-25
移动端阅览
郝雯,张雯静,梁玮等.面向三维点云的场景识别方法综述[J].光学精密工程,2022,30(16):1988-2005.
HAO Wen,ZHANG Wenjing,LIANG Wei,et al.Scene recognition for 3D point clouds: a review[J].Optics and Precision Engineering,2022,30(16):1988-2005.
郝雯,张雯静,梁玮等.面向三维点云的场景识别方法综述[J].光学精密工程,2022,30(16):1988-2005. DOI: 10.37188/OPE.20223016.1988.
HAO Wen,ZHANG Wenjing,LIANG Wei,et al.Scene recognition for 3D point clouds: a review[J].Optics and Precision Engineering,2022,30(16):1988-2005. DOI: 10.37188/OPE.20223016.1988.
基于智能机器人代替人到各种复杂环境完成探测、防疫等大量应用的需求,场景的识别引起了研究者的广泛关注。场景识别的目的是通过提取和分析场景中的特征,获得场景的高层语义信息,从而推理出所处的具体位置,它是同步定位与建图系统(Simultaneous Localization and Mapping,SLAM)、自动驾驶、机器人导航、闭环检测的基础。三维扫描技术的快速发展使得人们能够利用各种扫描仪快速获取各类场景的点云数据。不论扫描时间、光照环境如何变化,点云场景所获取的几何信息都具有较好的不变性,因此,基于点云的场景识别成为计算机视觉领域的研究热点。本文首先对近年来面向点云数据的场景识别方法进行了归纳和总结;然后介绍用于场景识别的大规模室内/室外场景的数据集,以及用于算法评测的评价指标,同时总结了各类算法的识别率。最后指出面向点云的场景识别中所面临的问题和挑战,对未来的研究趋势进行展望。研究结果有助于相关领域学者快速全面地了解基于点云数据场景识别的研究现状,为进一步提升场景识别精度奠定基础。
Intelligent robots can perform several high-risk tasks such as object detection and epidemic prevention to aid human beings. Research on scene recognition has attracted considerable attention in recent years. Scene recognition aims to obtain high-level semantic features and infer the location of a scene, laying a good foundation for simultaneous localization and mapping, autonomous driving, intelligent robotics, and loop detection. With the rapid development of 3D scanning technology, obtaining point clouds of various scenes using various scanners is extremely convenient. Compared with images, the geometric features of point clouds are invariant to drastic lighting and time changes, thus making the process of localization robust. Therefore, scene recognition of point clouds is one of the most important and fundamental research topics in computer vision. This paper systematically expounds the progress and current situation of scene recognition techniques of point clouds, including traditional methods and deep learning methods. Then, several public datasets for scene recognition are introduced in detail. The recognition rates of various algorithms are summarized. Finally, we note the challenges and future research directions of the scene recognition of point clouds. This study will help researchers in related fields to better understand the research status of scene recognition of point clouds quickly and comprehensively and lay a foundation for a further improvement in the recognition accuracy.
XIE L , LEE F F , LIU L , et al . Scene recognition: a comprehensive survey [J]. Pattern Recognition , 2020 , 102 : 107205 . doi: 10.1016/j.patcog.2020.107205 http://dx.doi.org/10.1016/j.patcog.2020.107205
ZHANG X W , WANG L , SU Y . Visual place recognition: a survey from deep learning perspective [J]. Pattern Recognition , 2021 , 113 : 107760 . doi: 10.1016/j.patcog.2020.107760 http://dx.doi.org/10.1016/j.patcog.2020.107760
ZENG H T , SONG X H , CHEN G W , et al . Learning scene attribute for scene recognition [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 6 ): 1519 - 1530 . doi: 10.1109/tmm.2019.2944241 http://dx.doi.org/10.1109/tmm.2019.2944241
CHEN G , SONG X , ZENG H , et al . Scene recognition with prototype-agnostic scene layout [J]. IEEE Transactions on Image Processing , 2020 , 29 : 5877 - 5888 . doi: 10.1109/tip.2020.2986599 http://dx.doi.org/10.1109/tip.2020.2986599
ZENG H T , SONG X H , CHEN G W , et al . Amorphous region context modeling for scene recognition [J]. IEEE Transactions on Multimedia , 2022 , 24 : 141 - 151 . doi: 10.1109/tmm.2020.3046877 http://dx.doi.org/10.1109/tmm.2020.3046877
MADDERN W , PASCOE G , LINEGAR C , et al . 1 year, 1000 km: the Oxford RobotCar dataset [J]. The International Journal of Robotics Research , 2017 , 36 ( 1 ): 3 - 15 . doi: 10.1177/0278364916679498 http://dx.doi.org/10.1177/0278364916679498
SONG X H , JIANG S Q , WANG B H , et al . Image representations with spatial object-to-object relations for RGB-D scene recognition [J]. IEEE Transactions on Image Processing , 2020 , 29 : 525 - 537 . doi: 10.1109/tip.2019.2933728 http://dx.doi.org/10.1109/tip.2019.2933728
DUBÉ R , DUGAS D , STUMM E , et al . SegMatch: Segment based place recognition in 3D point clouds [C]. 2017 IEEE International Conference on Robotics and Automation . Singapore . IEEE , 2017 : 5266 - 5272 . doi: 10.1109/icra.2017.7989618 http://dx.doi.org/10.1109/icra.2017.7989618
FERNÁNDEZ-MORAL E , MAYOL-CUEVAS W , ARÉVALO V , et al . Fast place recognition with plane-based maps [C]. 2013 IEEE International Conference on Robotics and Automation. Karlsruhe , Germany . IEEE , 2013 : 2719 - 2724 . doi: 10.1109/icra.2013.6630951 http://dx.doi.org/10.1109/icra.2013.6630951
FAN Y F , HE Y C , TAN U X . Seed: a segmentation-based egocentric 3D point cloud descriptor for loop closure detection [C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas , NV, USA . IEEE , 2020 : 5158 - 5163 . doi: 10.1109/iros45743.2020.9341517 http://dx.doi.org/10.1109/iros45743.2020.9341517
DUBÉ R , CRAMARIUC A , DUGAS D , et al . SegMap: Segment-based mapping and localization using data-driven descriptors [J]. The International Journal of Robotics Research , 2020 , 39 ( 2/3 ): 339 - 355 . doi: 10.1177/0278364919863090 http://dx.doi.org/10.1177/0278364919863090
TOMONO M . Loop detection for 3D LiDAR SLAM using segment-group matching [J]. Advanced Robotics , 2020 , 34 ( 23 ): 1530 - 1544 . doi: 10.1080/01691864.2020.1824809 http://dx.doi.org/10.1080/01691864.2020.1824809
BOSSE M , ZLOT R . Place recognition using keypoint voting in large 3D lidar datasets [C]. 2013 IEEE International Conference on Robotics and Automation. Karlsruhe , Germany . IEEE , 2013 : 2677 - 2684 . doi: 10.1109/icra.2013.6630945 http://dx.doi.org/10.1109/icra.2013.6630945
CIESLEWSKI T , STUMM E , GAWEL A , et al . Point cloud descriptors for place recognition using sparse visual information [C]. 2016 IEEE International Conference on Robotics and Automation . Stockholm, Sweden . IEEE , 2016 : 4830 - 4836 . doi: 10.1109/icra.2016.7487687 http://dx.doi.org/10.1109/icra.2016.7487687
HE L , WANG X L , ZHANG H . M2DP: a novel 3D point cloud descriptor and its application in loop closure detection [C]. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon , Korea (South) . IEEE , 2016 : 231 - 237 . doi: 10.1109/iros.2016.7759060 http://dx.doi.org/10.1109/iros.2016.7759060
ZHANG W X , XIAO C X . PCAN: 3D attention map learning using contextual information for point cloud based retrieval [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach , CA, USA . IEEE , 2019 : 12428 - 12437 . doi: 10.1109/cvpr.2019.01272 http://dx.doi.org/10.1109/cvpr.2019.01272
XIA Y , XU Y S , LI S , et al . SOE-net: a self-attention and orientation encoding network for point cloud based place recognition [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville , TN , USA . IEEE , 2021 : 11343 - 11352 . doi: 10.1109/cvpr46437.2021.01119 http://dx.doi.org/10.1109/cvpr46437.2021.01119
BARROS T , GARROTE L , PEREIRA R , et al . AttDLNet: attention-based DL network for 3D LiDAR place recognition [EB/OL]. 2021: arXiv : 2106 .09637[cs.CV]. https://arxiv.org/abs/2106.09637 https://arxiv.org/abs/2106.09637
LIU Z , ZHOU S B , SUO C Z , et al . LPD-net: 3D point cloud learning for large-scale place recognition and environment analysis [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul , Korea (South) . IEEE , 2019 : 2831 - 2840 . doi: 10.1109/iccv.2019.00292 http://dx.doi.org/10.1109/iccv.2019.00292
LIU Z , SUO C Z , ZHOU S B , et al . SeqLPD: sequence matching enhanced loop-closure detection based on large-scale point cloud description for self-driving vehicles [C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macao , China . IEEE , 2019 : 1218 - 1223 . doi: 10.1109/iros40897.2019.8967875 http://dx.doi.org/10.1109/iros40897.2019.8967875
YIN P , WANG F Y , EGOROV A , et al . SeqSphereVLAD: sequence matching enhanced orientation-invariant place recognition [C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas , NV, USA . IEEE , 2020 : 5024 - 5029 . doi: 10.1109/iros45743.2020.9341727 http://dx.doi.org/10.1109/iros45743.2020.9341727
YIN P , WANG F Y , EGOROV A , et al . Fast sequence-matching enhanced viewpoint-invariant 3-D place recognition [J]. IEEE Transactions on Industrial Electronics , 2022 , 69 ( 2 ): 2127 - 2135 . doi: 10.1109/tie.2021.3057025 http://dx.doi.org/10.1109/tie.2021.3057025
CHANG M Y , YEON S , RYU S , et al . SpoxelNet: spherical voxel-based deep place recognition for 3D point clouds of crowded indoor spaces [C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas , NV, USA . IEEE , 2020 : 8564 - 8570 . doi: 10.1109/iros45743.2020.9341549 http://dx.doi.org/10.1109/iros45743.2020.9341549
KOMOROWSKI J . MinkLoc3D: point cloud based large-scale place recognition [C]. 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa , HI, USA . IEEE , 2021 : 1789 - 1798 . doi: 10.1109/wacv48630.2021.00183 http://dx.doi.org/10.1109/wacv48630.2021.00183
XU T X , GUO Y C , LAI Y K , et al . TransLoc 3 D: Point Cloud based Large-scale Place Recognition using Adaptive Receptive Fields[EB/OL]. 2021: arXiv : 2105 .11605[cs.CV]. https://arxiv.org/abs/2105.11605 https://arxiv.org/abs/2105.11605
FAN Z X , SONG Z B , LIU H Y , et al . SVT-net: a super light-weight network for large scale place recognition using sparse voxel transformers [EB/OL]. 2021: arXiv : 2105 .00149[cs.CV]. https://arxiv.org/abs/2105.00149 https://arxiv.org/abs/2105.00149 . doi: 10.1609/aaai.v36i1.19934 http://dx.doi.org/10.1609/aaai.v36i1.19934
GOLLUB M G , DUBÉ R , SOMMER H , et al . A partitioned approach for efficient graph-based place recognition [C]. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst./Workshop Planning, Perception Navigat. Intell. Veh . 2017 : 1 - 5 .
廖瑞杰 , 杨绍发 , 孟文霞 , 等 . SegGraph: 室外场景三维点云闭环检测算法 [J]. 计算机研究与发展 , 2019 , 56 ( 2 ): 338 - 348 .
LIAO R J , YANG S F , MENG W X , et al . SegGraph: an algorithm for loop-closure detection in outdoor scenes using 3D point clouds [J]. Journal of Computer Research and Development , 2019 , 56 ( 2 ): 338 - 348 . (in Chinese)
FERNÁNDEZ-MORAL E , RIVES P , ARÉVALO V , et al . Scene structure registration for localization and mapping [J]. Robotics and Autonomous Systems , 2016 , 75 : 649 - 660 . doi: 10.1016/j.robot.2015.09.009 http://dx.doi.org/10.1016/j.robot.2015.09.009
VIDANAPATHIRANA K , MOGHADAM P , HARWOOD B , et al . Locus: LiDAR-based place recognition using spatiotemporal higher-order pooling [J]. 2021 IEEE International Conference on Robotics and Automation (ICRA) , 2021 : 5075 - 5081 . doi: 10.1109/icra48506.2021.9560915 http://dx.doi.org/10.1109/icra48506.2021.9560915
ROZENBERSZKI D , MAJDIK A L . LOL: Lidar-only Odometry and Localization in 3D point cloud maps [C]. 2020 IEEE International Conference on Robotics and Automation . Paris, France . IEEE , 2020 : 4379 - 4385 . doi: 10.1109/icra40945.2020.9197450 http://dx.doi.org/10.1109/icra40945.2020.9197450
JOHNSON A E , HEBERT M . Using spin images for efficient object recognition in cluttered 3D scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1999 , 21 ( 5 ): 433 - 449 . doi: 10.1109/34.765655 http://dx.doi.org/10.1109/34.765655
SALTI S , TOMBARI F , DI STEFANO L . SHOT: Unique signatures of histograms for surface and texture description [J]. Computer Vision and Image Understanding , 2014 , 125 : 251 - 264 . doi: 10.1016/j.cviu.2014.04.011 http://dx.doi.org/10.1016/j.cviu.2014.04.011
TOMBARI F , SALTI S , STEFANO L D . Unique shape context for 3d data description [C]. 3DOR '10 : Proceedings of the ACM workshop on 3D object retrieval . 2010 : 57 - 62 . doi: 10.1145/1877808.1877821 http://dx.doi.org/10.1145/1877808.1877821
RUSU R B , BLODOW N , BEETZ M . Fast point feature histograms (FPFH) for 3D registration [C]. 2009 IEEE International Conference on Robotics and Automation . Kobe, Japan . IEEE , 2009 : 3212 - 3217 . doi: 10.1109/robot.2009.5152473 http://dx.doi.org/10.1109/robot.2009.5152473
ALDOMA A , VINCZE M , BLODOW N , et al . CAD-model recognition and 6DOF pose estimation using 3D cues [C]. 2011 IEEE International Conference on Computer Vision Workshops . Barcelona, Spain . IEEE , 2011 : 585 - 592 . doi: 10.1109/iccvw.2011.6130296 http://dx.doi.org/10.1109/iccvw.2011.6130296
FENG G H , LIU Y , LIAO Y Y . LOIND: an illumination and scale invariant RGB-D descriptor [C]. 2015 IEEE International Conference on Robotics and Automation. Seattle , WA , USA . IEEE , 2015 : 1893 - 1898 . doi: 10.1109/icra.2015.7139445 http://dx.doi.org/10.1109/icra.2015.7139445
LOGOGLU K B , KALKAN S , TEMIZEL A . CoSPAIR: Colored Histograms of Spatial Concentric Surflet-Pairs for 3D object recognition [J]. Robotics and Autonomous Systems , 2016 , 75 : 558 - 570 . doi: 10.1016/j.robot.2015.09.027 http://dx.doi.org/10.1016/j.robot.2015.09.027
YU M F , ZHANG L , WANG W F , et al . Loop closure detection by using global and local features with photometric and viewpoint invariance [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2021 , 30 : 8873 - 8885 . doi: 10.1109/tip.2021.3116898 http://dx.doi.org/10.1109/tip.2021.3116898
PERDOMO L , PITTOL D , MANTELLI M , et al . C-M2DP: a fast point cloud descriptor with color information to perform loop closure detection [C]. 2019 IEEE 15th International Conference on Automation Science and Engineering . Vancouver, BC, Canada . IEEE , 2019 : 1145 - 1150 . doi: 10.1109/coase.2019.8842896 http://dx.doi.org/10.1109/coase.2019.8842896
RÖHLING T , MACK J , SCHULZ D . A fast histogram-based similarity measure for detecting loop closures in 3-D LIDAR data [C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg , Germany . IEEE , 2015 : 736 - 741 . doi: 10.1109/iros.2015.7353454 http://dx.doi.org/10.1109/iros.2015.7353454
RIZZINI D L . Place recognition of 3D landmarks based on geometric relations [C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver , BC, Canada . IEEE , 2017 : 648 - 654 . doi: 10.1109/iros.2017.8202220 http://dx.doi.org/10.1109/iros.2017.8202220
RIZZINI D L , GALASSO F , CASELLI S . Geometric relation distribution for place recognition [J]. IEEE Robotics and Automation Letters , 2019 , 4 ( 2 ): 523 - 529 . doi: 10.1109/lra.2019.2891432 http://dx.doi.org/10.1109/lra.2019.2891432
KIM G , KIM A . Scan context: egocentric spatial descriptor for place recognition within 3D point cloud map [C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid , Spain . IEEE , 2018 : 4802 - 4809 . doi: 10.1109/iros.2018.8593953 http://dx.doi.org/10.1109/iros.2018.8593953
KIM G , PARK B , KIM A . 1-day learning, 1-year localization: long-term LiDAR localization using scan context image [J]. IEEE Robotics and Automation Letters , 2019 , 4 ( 2 ): 1948 - 1955 . doi: 10.1109/lra.2019.2897340 http://dx.doi.org/10.1109/lra.2019.2897340
WANG H , WANG C , XIE L H . Intensity scan context: coding intensity and geometry relations for loop closure detection [C]. 2020 IEEE International Conference on Robotics and Automation . Paris, France . IEEE , 2020 : 2095 - 2101 . doi: 10.1109/icra40945.2020.9196764 http://dx.doi.org/10.1109/icra40945.2020.9196764
LI L , KONG X , ZHAO X R , et al . SSC: semantic scan context for large-scale place recognition [C]. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague , Czech Republic . IEEE , 2021 : 2092 - 2099 . doi: 10.1109/iros51168.2021.9635904 http://dx.doi.org/10.1109/iros51168.2021.9635904
SIVA S , NAHMAN Z , ZHANG H . Voxel-based representation learning for place recognition based on 3D point clouds [C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas , NV, USA . IEEE , 2020 : 8351 - 8357 . doi: 10.1109/iros45743.2020.9340992 http://dx.doi.org/10.1109/iros45743.2020.9340992
GUO J D , BORGES P V K , PARK C , et al . Local descriptor for robust place recognition using LiDAR intensity [J]. IEEE Robotics and Automation Letters , 2019 , 4 ( 2 ): 1470 - 1477 . doi: 10.1109/lra.2019.2893887 http://dx.doi.org/10.1109/lra.2019.2893887
SHI W J , RAJKUMAR R . Point-GNN: graph neural network for 3D object detection in a point cloud [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle , WA , USA . IEEE , 2020 : 1708 - 1716 . doi: 10.1109/cvpr42600.2020.00178 http://dx.doi.org/10.1109/cvpr42600.2020.00178
王张飞 , 刘春阳 , 隋新 , 等 . 基于深度投影的三维点云目标分割和碰撞检测 [J]. 光学 精密工程 , 2020 , 28 ( 7 ): 1600 - 1608 . doi: 10.37188/OPE.20202807.1600 http://dx.doi.org/10.37188/OPE.20202807.1600
WANG Z F , LIU C Y , SUI X , et al . Three-dimensional point cloud object segmentation and collision detection based on depth projection [J]. Opt. Precision Eng. , 2020 , 28 ( 7 ): 1600 - 1608 . (in Chinese) . doi: 10.37188/OPE.20202807.1600 http://dx.doi.org/10.37188/OPE.20202807.1600
LI R H , LI X Z , HENG P A , et al . PointAugment: an auto-augmentation framework for point cloud classification [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle , WA , USA . IEEE , 2020 : 6377 - 6386 . doi: 10.1109/cvpr42600.2020.00641 http://dx.doi.org/10.1109/cvpr42600.2020.00641
WANG Y , SUN Y B , LIU Z W , et al . Dynamic graph CNN for learning on point clouds [J]. ACM Transactions on Graphics , 2019 , 38 ( 5 ): 1 - 12 . doi: 10.1145/3326362 http://dx.doi.org/10.1145/3326362
杨军 , 党吉圣 . 采用深度级联卷积神经网络的三维点云识别与分割 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1187 - 1199 .
YANG J , DANG J S . Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1187 - 1199 . (in Chinese)
赵传 , 张保明 , 余东行 , 等 . 利用迁移学习的机载激光雷达点云分类 [J]. 光学 精密工程 , 2019 , 27 ( 7 ): 1601 - 1612 . doi: 10.3788/OPE.20192707.1601 http://dx.doi.org/10.3788/OPE.20192707.1601
ZHAO C , ZHANG B M , YU D H , et al . Airborne LiDAR point cloud classification using transfer learning [J]. Opt. Precision Eng. , 2019 , 27 ( 7 ): 1601 - 1612 . (in Chinese) . doi: 10.3788/OPE.20192707.1601 http://dx.doi.org/10.3788/OPE.20192707.1601
CHARLES R Q , HAO S , MO K C , et al . PointNet: deep learning on point sets for 3D classification and segmentation [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu, HI, USA . IEEE , 2017 : 77 - 85 . doi: 10.1109/cvpr.2017.16 http://dx.doi.org/10.1109/cvpr.2017.16
QI C R , YI L , SU H , et al . Pointnet++: Deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems. 2017 ,( 30 ): 5099 - 5108 .
UY M A , LEE G H . PointNetVLAD: deep point cloud based retrieval for large-scale place recognition [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT, USA . IEEE , 2018 : 4470 - 4479 . doi: 10.1109/cvpr.2018.00470 http://dx.doi.org/10.1109/cvpr.2018.00470
SUN Q , LIU H Y , HE J , et al . DAGC: employing dual attention and graph convolution for point cloud based place recognition [C]. ICMR '20 : Proceedings of the 2020 International Conference on Multimedia Retrieval . 2020 : 224 - 232 . doi: 10.1145/3372278.3390693 http://dx.doi.org/10.1145/3372278.3390693
FAN Z X , LIU H Y , HE J , et al . SRNet: a 3D scene recognition network using static graph and dense semantic fusion [J]. Computer Graphics Forum , 2020 , 39 ( 7 ): 301 - 311 . doi: 10.1111/cgf.14146 http://dx.doi.org/10.1111/cgf.14146
KONG X , YANG X M , ZHAI G Y , et al . Semantic graph based place recognition for 3D point clouds [C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas , NV, USA . IEEE , 2020 : 8216 - 8223 . doi: 10.1109/iros45743.2020.9341060 http://dx.doi.org/10.1109/iros45743.2020.9341060
FAN Z X , SONG Z B , ZHANG W P , et al . RPR-net: a point cloud-based rotation-aware large scale place recognition network [EB/OL]. 2021: arXiv : 2108 .12790[cs.CV]. https://arxiv.org/abs/2108.12790 https://arxiv.org/abs/2108.12790
HUI L , CHENG M M , XIE J , et al . Efficient 3D point cloud feature learning for large-scale place recognition [J]. IEEE Transactions on Image Processing , 2022 , 31 : 1258 - 1270 . doi: 10.1109/tip.2021.3136714 http://dx.doi.org/10.1109/tip.2021.3136714
DU J , WANG R , CREMERS D . DH 3 D : deep hierarchical 3 D descriptors for robust large-scale 6 DoF relocalization [M]. Computer Vision – ECCV 2020. Cham : Springer International Publishing , 2020 : 744 - 762 . doi: 10.1007/978-3-030-58548-8_43 http://dx.doi.org/10.1007/978-3-030-58548-8_43
GONG Y S , SUN F C , YUAN J , et al . A two-level framework for place recognition with 3D LiDAR based on spatial relation graph [J]. Pattern Recognition , 2021 , 120 : 108171 . doi: 10.1016/j.patcog.2021.108171 http://dx.doi.org/10.1016/j.patcog.2021.108171
ZHOU Z C , ZHAO C , ADOLFSSON D , et al . NDT-transformer: large-scale 3D point cloud localisation using the normal distribution transform representation [J]. 2021 IEEE International Conference on Robotics and Automation (ICRA) , 2021 : 5654 - 5660 . doi: 10.1109/icra48506.2021.9560932 http://dx.doi.org/10.1109/icra48506.2021.9560932
HUI L , YANG H , CHENG M M , et al . Pyramid point cloud transformer for large-scale place recognition [C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal , QC, Canada . IEEE , 2021 : 6078 - 6087 . doi: 10.1109/iccv48922.2021.00604 http://dx.doi.org/10.1109/iccv48922.2021.00604
ARANDJELOVIC R , GRONAT P , TORII A , et al . NetVLAD: CNN architecture for weakly supervised place recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 6 ): 1437 - 1451 . doi: 10.1109/tpami.2017.2711011 http://dx.doi.org/10.1109/tpami.2017.2711011
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [J]. In Advances in neural information processing systems , 2017 , pp. 5998 - 6008 .
GEIGER A , LENZ P , URTASUN R . Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence , RI , USA . IEEE , 2012 : 3354 - 3361 . doi: 10.1109/cvpr.2012.6248074 http://dx.doi.org/10.1109/cvpr.2012.6248074
GEIGER A , LENZ P , STILLER C , et al . Vision meets robotics: the KITTI dataset [J]. The International Journal of Robotics Research , 2013 , 32 ( 11 ): 1231 - 1237 . doi: 10.1177/0278364913491297 http://dx.doi.org/10.1177/0278364913491297
CARLEVARIS-BIANCO N , USHANI A K , EUSTICE R M . University of Michigan north campus long-term vision and lidar dataset [J]. The International Journal of Robotics Research , 2016 , 35 ( 9 ): 1023 - 1035 . doi: 10.1177/0278364915614638 http://dx.doi.org/10.1177/0278364915614638
KIM G , PARK Y S , CHO Y , et al . MulRan: multimodal range dataset for urban place recognition [C]. 2020 IEEE International Conference on Robotics and Automation . Paris, France . IEEE , 2020 : 6246 - 6253 . doi: 10.1109/icra40945.2020.9197298 http://dx.doi.org/10.1109/icra40945.2020.9197298
PANDEY G , MCBRIDE J R , EUSTICE R M . Ford Campus vision and lidar data set [J]. The International Journal of Robotics Research , 2011 , 30 ( 13 ): 1543 - 1552 . doi: 10.1177/0278364911400640 http://dx.doi.org/10.1177/0278364911400640
SUO C Z , LIU Z , MO L F , et al . LPD-AE: latent space representation of large-scale 3D point cloud [J]. IEEE Access , 2020 , 8 : 108402 - 108417 . doi: 10.1109/access.2020.2999727 http://dx.doi.org/10.1109/access.2020.2999727
杨必胜 , 董震 . 点云智能研究进展与趋势 [J]. 测绘学报 , 2019 , 48 ( 12 ): 1575 - 1585 .
YANG B S , DONG Z . Progress and perspective of point cloud intelligence [J]. Acta Geodaetica et Cartographica Sinica , 2019 , 48 ( 12 ): 1575 - 1585 . (in Chinese)
0
浏览量
983
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构