浏览全部资源
扫码关注微信
1.湖南大学 机械与运载工程学院 国家高效磨削工程技术研究中心,湖南 长沙 410082
2.湖南大学 深圳研究院 微纳光学器件先进制造实验室,广东 深圳 518000
3.湖南大学 粤港澳大湾区创新研究院(广州增城),广东 广州 511300
4.试验物理与计算数学国家级重点实验室,北京100076
[ "李奥凌(1998-),女,江西新余人,硕士研究生,2020年于江西农业大学获得学士学位,主要从事微纳制造、微纳光学、超构表面方面的研究。E-mail: reginalee24@hnu.edu.cn" ]
[ "胡跃强(1992-),男,安徽合肥人,博士,副教授,博士生导师,2013年于西南交通大学获得学士学位,2018年于清华大学获得博士学位,主要从事微纳加工、微纳光学和表界面力学等方面的研究。E-mail: huyq@hnu.edu.cn" ]
收稿日期:2022-05-27,
修回日期:2022-06-20,
纸质出版日期:2022-10-10
移动端阅览
李奥凌,段辉高,贾红辉等.中红外波段超构透镜研究进展[J].光学精密工程,2022,30(19):2313-2331.
LI Aoling,DUAN Huigao,JIA Honghui,et al.Research progress of metalenses in mid-infrared band[J].Optics and Precision Engineering,2022,30(19):2313-2331.
李奥凌,段辉高,贾红辉等.中红外波段超构透镜研究进展[J].光学精密工程,2022,30(19):2313-2331. DOI: 10.37188/OPE.20223019.2313.
LI Aoling,DUAN Huigao,JIA Honghui,et al.Research progress of metalenses in mid-infrared band[J].Optics and Precision Engineering,2022,30(19):2313-2331. DOI: 10.37188/OPE.20223019.2313.
中红外成像器件,特别是工作于大气窗口(3~5 μm和8~12 μm)的成像器件,在红外成像与探测方面具有重要应用。传统的中红外成像器件笨重、昂贵、工艺复杂,阻碍了未来轻量化和集成化的发展。由亚波长尺度的微纳米结构以周期或非周期的方式阵列而成的超构透镜,具有轻薄、易集成、多功能化的特性,为未来微型化的需求提供了新的可能性。本文对中红外波段的超构透镜研究进展进行了综述,介绍了超构透镜的基本相位调控方式及其在中红外实现高聚焦效率、消除色差和单色像差的机理,并整理了中红外超构透镜的成像应用,包括偏振相关成像、可调及可重构成像与其他一些成像应用,最后讨论了这一新兴领域的挑战及未来的发展前景。
Mid-infrared imaging devices, especially those operating in the atmospheric window (3-5 μm and 8-12 μm), have important applications in infrared imaging and detection. Traditional mid-infrared imaging devices are usually bulky, expensive and complicated, which hinder the development of lightweight and integration in the future. The metalens, which are composed of subwavelength micro-nano structures arrayed in a periodic or aperiodic manner, have the characteristics of thinness, easy of integration and multi-functionality, providing new possibilities for future miniaturization needs. In this paper, the research progress of metalens in the mid-infrared band is reviewed, then the basic phase control methods of the metalens and its mechanism for achieving high focusing efficiency, eliminating chromatic aberration and monochromatic aberration in the mid-infrared band are introduced. Moreover, this paper sort out the imaging applications of mid-infrared metalens, including polarization dependent imaging, tunable and reconfigurable imaging and other imaging applications. Finally, the challenges and future prospects of this emerging field are discussed.
李相迪 , 黄英 , 张培晴 , 等 . 红外成像系统及其应用 [J]. 激光与红外 , 2014 , 44 ( 3 ): 229 - 234 . doi: 10.3969/j.issn.1001-5078.2014.03.01 http://dx.doi.org/10.3969/j.issn.1001-5078.2014.03.01
LI X D , HUANG Y , ZHANG P Q , et al . Infrared imaging system and applications [J]. Laser & Infrared , 2014 , 44 ( 3 ): 229 - 234 . (in Chinese) . doi: 10.3969/j.issn.1001-5078.2014.03.01 http://dx.doi.org/10.3969/j.issn.1001-5078.2014.03.01
范晋祥 , 杨建宇 . 红外成像探测技术发展趋势分析 [J]. 红外与激光工程 , 2012 , 41 ( 12 ): 3145 - 3153 . doi: 10.3969/j.issn.1007-2276.2012.12.003 http://dx.doi.org/10.3969/j.issn.1007-2276.2012.12.003
FAN J X , YANG J Y . Development trends of infrared imaging detecting technology [J]. Infrared and Laser Engineering , 2012 , 41 ( 12 ): 3145 - 3153 . (in Chinese) . doi: 10.3969/j.issn.1007-2276.2012.12.003 http://dx.doi.org/10.3969/j.issn.1007-2276.2012.12.003
YU N F , GENEVET P , KATS M A , et al . Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science , 2011 , 334 ( 6054 ): 333 - 337 . doi: 10.1126/science.1210713 http://dx.doi.org/10.1126/science.1210713
HU Y Q , WANG X D , LUO X H , et al . All-dielectric metasurfaces for polarization manipulation: principles and emerging applications [J]. Nanophotonics , 2020 , 9 ( 12 ): 3755 - 3780 . doi: 10.1515/nanoph-2020-0220 http://dx.doi.org/10.1515/nanoph-2020-0220
KAMALI S M , ARBABI E , ARBABI A , et al . A review of dielectric optical metasurfaces for wavefront control [J]. Nanophotonics , 2018 , 7 ( 6 ): 1041 - 1068 . doi: 10.1515/nanoph-2017-0129 http://dx.doi.org/10.1515/nanoph-2017-0129
HSIAO H H , CHU C H , TSAI D P . Metasurfaces: fundamentals and applications of metasurfaces (small methods 4/2017) [J]. Small Methods , 2017 , 1 ( 4 ): 1600064 . doi: 10.1002/smtd.201600064 http://dx.doi.org/10.1002/smtd.201600064
BANERJI S , MEEM M , MAJUMDER A , et al . Imaging with flat optics: metalenses or diffractive lenses? [J]. Optica , 2019 , 6 ( 6 ): 805 . doi: 10.1364/optica.6.000805 http://dx.doi.org/10.1364/optica.6.000805
LALANNE P , CHAVEL P . Metalenses at visible wavelengths: past, present, perspectives [J]. Laser & Photonics Reviews , 2017 , 11 ( 3 ): 1600295 . doi: 10.1002/lpor.201600295 http://dx.doi.org/10.1002/lpor.201600295
KHORASANINEJAD M , CAPASSO F . Metalenses: versatile multifunctional photonic components [J]. Science , 2017 , 358 ( 6367 ): eaam8100 . doi: 10.1126/science.aam8100 http://dx.doi.org/10.1126/science.aam8100
KHORASANINEJAD M , CHEN W T , DEVLIN R C , et al . Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science , 2016 , 352 ( 6290 ): 1190 - 1194 . doi: 10.1126/science.aaf6644 http://dx.doi.org/10.1126/science.aaf6644
KHORASANINEJAD M , ZHU A Y , ROQUES-CARMES C , et al . Polarization-insensitive metalenses at visible wavelengths [J]. Nano Letters , 2016 , 16 ( 11 ): 7229 - 7234 . doi: 10.1021/acs.nanolett.6b03626 http://dx.doi.org/10.1021/acs.nanolett.6b03626
ARBABI A , HORIE Y , BALL A J , et al . Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays [J]. Nature Communications , 2015 , 6 : 7069 . doi: 10.1038/ncomms8069 http://dx.doi.org/10.1038/ncomms8069
YOON G , KIM K , KIM S U , et al . Printable nanocomposite metalens for high-contrast near-infrared imaging [J]. ACS Nano , 2021 , 15 ( 1 ): 698 - 706 . doi: 10.1021/acsnano.0c06968 http://dx.doi.org/10.1021/acsnano.0c06968
CAO G T , XU H X , ZHOU L M , et al . Infrared metasurface-enabled compact polarization nanodevices [J]. Materials Today , 2021 , 50 : 499 - 515 . doi: 10.1016/j.mattod.2021.06.014 http://dx.doi.org/10.1016/j.mattod.2021.06.014
CHEN B H , WU P C , SU V C , et al . GaN metalens for pixel-level full-color routing at visible light [J]. Nano Letters , 2017 , 17 ( 10 ): 6345 - 6352 . doi: 10.1021/acs.nanolett.7b03135 http://dx.doi.org/10.1021/acs.nanolett.7b03135
WANG S M , WU P C , SU V C , et al . A broadband achromatic metalens in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 227 - 232 . doi: 10.1038/s41565-017-0052-4 http://dx.doi.org/10.1038/s41565-017-0052-4
KHORASANINEJAD M , CHEN W T , ZHU A Y , et al . Multispectral chiral imaging with a metalens [J]. Nano Letters , 2016 , 16 ( 7 ): 4595 - 4600 . doi: 10.1021/acs.nanolett.6b01897 http://dx.doi.org/10.1021/acs.nanolett.6b01897
PARK J S , ZHANG S Y , SHE A L , et al . All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography [J]. Nano Letters , 2019 , 19 ( 12 ): 8673 - 8682 . doi: 10.1021/acs.nanolett.9b03333 http://dx.doi.org/10.1021/acs.nanolett.9b03333
ZOU Y , CHAKRAVARTY S , CHUNG C J , et al . Mid-infrared silicon photonic waveguides and devices [J]. Photonics Research , 2018 , 6 ( 4 ): 254 - 276 . doi: 10.1364/prj.6.000254 http://dx.doi.org/10.1364/prj.6.000254
HU T , DONG B W , LUO X S , et al . Silicon photonic platforms for mid-infrared applications [J]. Photonics Research , 2017 , 5 ( 5 ): 417 - 430 . doi: 10.1364/prj.5.000417 http://dx.doi.org/10.1364/prj.5.000417
MASHANOVICH G Z , MITCHELL C J , PENADES J S , et al . Germanium mid-infrared photonic devices [J]. Journal of Lightwave Technology , 2017 , 35 ( 4 ): 624 - 630 . doi: 10.1109/jlt.2016.2632301 http://dx.doi.org/10.1109/jlt.2016.2632301
SOREF R . Mid-infrared photonics in silicon and germanium [J]. Nature Photonics , 2010 , 4 ( 8 ): 495 - 497 . doi: 10.1038/nphoton.2010.171 http://dx.doi.org/10.1038/nphoton.2010.171
张龙 , 陈雷 , 范有余 , 等 . 中红外玻璃材料发展及前沿应用 [J]. 光学学报 , 2011 , 31 ( 9 ): 296 - 304 . doi: 10.3788/AOS201131.0900134 http://dx.doi.org/10.3788/AOS201131.0900134
ZHANG L , CHEN L , FAN Y Y , et al . Development of mid-infrared transmitting glasses window and applications [J]. Acta Optica Sinica , 2011 , 31 ( 9 ): 296 - 304 . (in Chinese) . doi: 10.3788/AOS201131.0900134 http://dx.doi.org/10.3788/AOS201131.0900134
LECAPLAIN C , JAVERZAC-GALY C , GORODETSKY M L , et al . Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials [J]. Nature Communications , 2016 , 7 : 13383 . doi: 10.1038/ncomms13383 http://dx.doi.org/10.1038/ncomms13383
刘逸天 , 陈琦凯 , 唐志远 , 等 . 超表面透镜的像差分析和成像技术研究 [J]. 中国光学 , 2021 , 14 ( 4 ): 831 - 850 . doi: 10.37188/CO.2021-0014 http://dx.doi.org/10.37188/CO.2021-0014
LIU Y T , CHEN Q K , TANG ZH Y , et al . Research progress of aberration analysis and imaging technology based on metalens [J]. Chinese Optics , 2021 , 14 ( 4 ): 831 - 850 . (in Chinese) . doi: 10.37188/CO.2021-0014 http://dx.doi.org/10.37188/CO.2021-0014
GROEVER B , CHEN W T , CAPASSO F . Meta-lens doublet in the visible region [J]. Nano Letters , 2017 , 17 ( 8 ): 4902 - 4907 . doi: 10.1021/acs.nanolett.7b01888 http://dx.doi.org/10.1021/acs.nanolett.7b01888
SHE A L , ZHANG S Y , SHIAN S , et al . Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift [J]. Science Advances , 2018 , 4 ( 2 ): eaap9957 . doi: 10.1126/sciadv.aap9957 http://dx.doi.org/10.1126/sciadv.aap9957
CHEN X Z , HUANG L L , MÜHLENBERND H , et al . Dual-polarity plasmonic metalens for visible light [J]. Nature Communications , 2012 , 3 : 1198 . doi: 10.1038/ncomms2207 http://dx.doi.org/10.1038/ncomms2207
NI X J , ISHII S , KILDISHEV A V , et al . Ultra-thin, planar, babinet-inverted plasmonic metalenses [J]. Light: Science & Applications , 2013 , 2 ( 4 ): e72 . doi: 10.1038/lsa.2013.28 http://dx.doi.org/10.1038/lsa.2013.28
PFEIFFER C , GRBIC A . Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets [J]. Physical Review Letters , 2013 , 110 ( 19 ): 197401 . doi: 10.1103/physrevlett.110.197401 http://dx.doi.org/10.1103/physrevlett.110.197401
YU Y F , ZHU A Y , PANIAGUA-DOMÍNGUEZ R , et al . High-transmission dielectric metasurface with 2π phase control at visible wavelengths [J]. Laser & Photonics Reviews , 2015 , 9 ( 4 ): 412 - 418 . doi: 10.1002/lpor.201500041 http://dx.doi.org/10.1002/lpor.201500041
DECKER M , STAUDE I , FALKNER M , et al . High-efficiency dielectric Huygens’ surfaces [J]. Advanced Optical Materials , 2015 , 3 ( 6 ): 813 - 820 . doi: 10.1002/adom.201400584 http://dx.doi.org/10.1002/adom.201400584
ARBABI A , BRIGGS R M , HORIE Y , et al . Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers [J]. Optics Express , 2015 , 23 ( 26 ): 33310 - 33317 . doi: 10.1364/oe.23.033310 http://dx.doi.org/10.1364/oe.23.033310
PANCHARATNAM S . Generalized theory of interference and its applications [J]. Proceedings of the Indian Academy of Sciences-Section A , 1956 , 44 ( 6 ): 398 - 417 . doi: 10.1007/bf03046095 http://dx.doi.org/10.1007/bf03046095
ZHANG S Y , KIM M H , AIETA F , et al . High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays [J]. 2016 Conference on Lasers and Electro-Optics (CLEO) , 2016 : 1 - 2 . doi: 10.1364/cleo_qels.2016.fth1d.3 http://dx.doi.org/10.1364/cleo_qels.2016.fth1d.3
ZUO H J , CHOI D , GAI X , et al . High‐efficiency all‐dielectric metalenses for mid‐infrared imaging [J]. Advanced Optical Materials , 2017 , 5 ( 23 ): 1700585 . doi: 10.1002/adom.201700585 http://dx.doi.org/10.1002/adom.201700585
LEITIS A , TSENG M L , JOHN-HERPIN A , et al . Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing [J]. Advanced Materials (Deerfield Beach, Fla) , 2021 , 33 ( 43 ): e2102232 . doi: 10.1002/adma.202102232 http://dx.doi.org/10.1002/adma.202102232
ZHANG L , DING J , ZHENG H Y , et al . Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications , 2018 , 9 ( 1 ): 1481 . doi: 10.1038/s41467-018-03831-7 http://dx.doi.org/10.1038/s41467-018-03831-7
FAN Q B , WANG Y L , LIU M Z , et al . High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light [J]. Optics Letters , 2018 , 43 ( 24 ): 6005 - 6008 . doi: 10.1364/ol.43.006005 http://dx.doi.org/10.1364/ol.43.006005
ZHANG S Y , SOIBEL A , KEO S A , et al . Solid-immersion metalenses for infrared focal plane arrays [J]. Applied Physics Letters , 2018 , 113 ( 11 ): 111104 . doi: 10.1063/1.5040395 http://dx.doi.org/10.1063/1.5040395
AIETA F , KATS M A , GENEVET P , et al . Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation [J]. Science , 2015 , 347 ( 6228 ): 1342 - 1345 . doi: 10.1126/science.aaa2494 http://dx.doi.org/10.1126/science.aaa2494
ZHOU Y , KRAVCHENKO I I , WANG H , et al . Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics [J]. Nano Letters , 2018 , 18 ( 12 ): 7529 - 7537 . doi: 10.1021/acs.nanolett.8b03017 http://dx.doi.org/10.1021/acs.nanolett.8b03017
AVAYU O , ALMEIDA E , PRIOR Y , et al . Composite functional metasurfaces for multispectral achromatic optics [J]. Nature Communications , 2017 , 8 ( 1 ): 14992 . doi: 10.1038/ncomms14992 http://dx.doi.org/10.1038/ncomms14992
WANG S M , WU P C , SU V C , et al . Broadband achromatic optical metasurface devices [J]. Nature Communications , 2017 , 8 ( 1 ): 187 - 189 . doi: 10.1038/s41467-017-00166-7 http://dx.doi.org/10.1038/s41467-017-00166-7
CHEN W T , ZHU A Y , SANJEEV V , et al . A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 220 - 226 . doi: 10.1038/s41565-017-0034-6 http://dx.doi.org/10.1038/s41565-017-0034-6
CHEN W T , ZHU A Y , SISLER J , et al . A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures [J]. Nature Communications , 2019 , 10 : 355 . doi: 10.1038/s41467-019-08305-y http://dx.doi.org/10.1038/s41467-019-08305-y
ZHOU H P , CHEN L , SHEN F , et al . Broadband achromatic metalens in the midinfrared range [J]. Physical Review Applied , 2019 , 11 ( 2 ): 024066 . doi: 10.1103/physrevapplied.11.024066 http://dx.doi.org/10.1103/physrevapplied.11.024066
OU K , YU F L , LI G H , et al . Broadband achromatic metalens in mid-wavelength infrared [J]. Laser & Photonics Reviews , 2021 , 15 ( 9 ): 2100020 . doi: 10.1002/lpor.202100020 http://dx.doi.org/10.1002/lpor.202100020
SONG N T , XU N X , SHAN D Z , et al . Broadband achromatic metasurfaces for longwave infrared applications [J]. Nanomaterials (Basel, Switzerland) , 2021 , 11 ( 10 ): 2760 . doi: 10.3390/nano11102760 http://dx.doi.org/10.3390/nano11102760
XIONG W H , SHA C C , DING J P . Polarization-independent broadband achromatic metalens in the mid-infrared (3-5 μm) region [J]. Applied Physics Express , 2022 , 15 ( 2 ): 022001 . doi: 10.35848/1882-0786/ac4677 http://dx.doi.org/10.35848/1882-0786/ac4677
KALVACH A , SZABÓ Z . Aberration-free flat lens design for a wide range of incident angles [J]. Journal of the Optical Society of America B , 2016 , 33 ( 2 ): A66 - A71 . doi: 10.1364/josab.33.000a66 http://dx.doi.org/10.1364/josab.33.000a66
AIETA F , GENEVET P , KATS M , et al . Aberrations of flat lenses and aplanatic metasurfaces [J]. Optics Express , 2013 , 21 ( 25 ): 31530 - 31539 . doi: 10.1364/oe.21.031530 http://dx.doi.org/10.1364/oe.21.031530
LUO X G , ZHANG F , PU M B , et al . Recent advances of wide-angle metalenses: principle, design, and applications [J]. Nanophotonics , 2021 , 11 ( 1 ): 1 - 20 . doi: 10.1515/nanoph-2021-0583 http://dx.doi.org/10.1515/nanoph-2021-0583
AIETA F , GENEVET P , KATS M A , et al . Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Letters , 2012 , 12 ( 9 ): 4932 - 4936 . doi: 10.1021/nl302516v http://dx.doi.org/10.1021/nl302516v
BURALLI D A , MORRIS G M . Design of a wide field diffractive landscape lens [J]. Applied Optics , 1989 , 28 ( 18 ): 3950 - 3959 . doi: 10.1364/ao.28.003950 http://dx.doi.org/10.1364/ao.28.003950
ARBABI A , ARBABI E , KAMALI S M , et al . Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations [J]. Nature Communications , 2016 , 7 : 13682 . doi: 10.1038/ncomms13682 http://dx.doi.org/10.1038/ncomms13682
MARTINS A , LI K Z , LI J T , et al . On metalenses with arbitrarily wide field of view [J]. ACS Photonics , 2020 , 7 ( 8 ): 2073 - 2079 . doi: 10.1021/acsphotonics.0c00479 http://dx.doi.org/10.1021/acsphotonics.0c00479
PU M B , LI X , GUO Y H , et al . Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing [J]. Optics Express , 2017 , 25 ( 25 ): 31471 - 31477 . doi: 10.1364/oe.25.031471 http://dx.doi.org/10.1364/oe.25.031471
SHALAGINOV M Y , AN S S , YANG F , et al . Single-element diffraction-limited fisheye metalens [J]. Nano Letters , 2020 , 20 ( 10 ): 7429 - 7437 . doi: 10.1021/acs.nanolett.0c02783 http://dx.doi.org/10.1021/acs.nanolett.0c02783
Engelberg J , Zhou C , Mazurski N , et al . Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications [J]. Nanophotonics , 2020 , 9 ( 2 ): 361 - 370 . doi: 10.1515/nanoph-2019-0177 http://dx.doi.org/10.1515/nanoph-2019-0177
LINFOOT E H , WOLF E . On the corrector plates of Schmidt cameras [J]. Journal of the Optical Society of America , 1949 , 39 ( 9 ): 752 . doi: 10.1364/josa.39.000752 http://dx.doi.org/10.1364/josa.39.000752
黄振宇 . 大视场宽波段成像超透镜的研究 [D]. 成都 : 电子科技大学 , 2021 .
HUANG ZH Y . Research on Imaging Metalens with Wide Bandwidth and Large Viewing Field [D]. Chengdu : University of Electronic Science and Technology of China , 2021 . (in Chinese)
ZHANG F , PU M B , LI X , et al . Extreme-angle silicon infrared optics enabled by streamlined surfaces [J]. Advanced Materials (Deerfield Beach, Fla) , 2021 , 33 ( 11 ): e2008157 . doi: 10.1002/adma.202008157 http://dx.doi.org/10.1002/adma.202008157
GARCIA N M , DE ERAUSQUIN I , EDMISTON C , et al . Surface normal reconstruction using circularly polarized light [J]. Optics Express , 2015 , 23 ( 11 ): 14391 - 14406 . doi: 10.1364/oe.23.014391 http://dx.doi.org/10.1364/oe.23.014391
COFFEEN D L . Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter [J]. Journal of the Optical Society of America , 1979 , 69 ( 8 ): 1051 - 1064 . doi: 10.1364/josa.69.001051 http://dx.doi.org/10.1364/josa.69.001051
TYO J S , GOLDSTEIN D L , CHENAULT D B , et al . Review of passive imaging polarimetry for remote sensing applications [J]. Applied Optics , 2006 , 45 ( 22 ): 5453 - 5469 . doi: 10.1364/ao.45.005453 http://dx.doi.org/10.1364/ao.45.005453
ARBABI E , KAMALI S M , ARBABI A , et al . Full-stokes imaging polarimetry using dielectric metasurfaces [J]. ACS Photonics , 2018 , 5 ( 8 ): 3132 - 3140 . doi: 10.1021/acsphotonics.8b00362 http://dx.doi.org/10.1021/acsphotonics.8b00362
WEI S W , YANG Z Y , ZHAO M . Design of ultracompact polarimeters based on dielectric metasurfaces [J]. Optics Letters , 2017 , 42 ( 8 ): 1580 - 1583 . doi: 10.1364/ol.42.001580 http://dx.doi.org/10.1364/ol.42.001580
YANG Z Y , WANG Z K , WANG Y X , et al . Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications , 2018 , 9 ( 1 ): 4607 . doi: 10.1038/s41467-018-07056-6 http://dx.doi.org/10.1038/s41467-018-07056-6
LI X S , WANG H , XU X M , et al . Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces [J]. Optics Communications , 2021 , 484 : 126690 . doi: 10.1016/j.optcom.2020.126690 http://dx.doi.org/10.1016/j.optcom.2020.126690
YAN C , LI X , PU M B , et al . Midinfrared real-time polarization imaging with all-dielectric metasurfaces [J]. Applied Physics Letters , 2019 , 114 ( 16 ): 161904 . doi: 10.1063/1.5091475 http://dx.doi.org/10.1063/1.5091475
OU K , YU F L , LI G H , et al . Mid-infrared polarization-controlled broadband achromatic metadevice [J]. Science Advances , 2020 , 6 ( 37 ): eabc0711 . doi: 10.1126/sciadv.abc0711 http://dx.doi.org/10.1126/sciadv.abc0711
HE C , SUN T , GUO J J , et al . Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region [J]. Advanced Optical Materials , 2019 , 7 ( 24 ): 1901129 . doi: 10.1002/adom.201901129 http://dx.doi.org/10.1002/adom.201901129
NEMATI A , WANG Q , HONG M H , et al . Tunable and reconfigurable metasurfaces and metadevices [J]. Opto-Electronic Advances , 2018 , 1 ( 5 ): 18000901 - 18000925 . doi: 10.29026/oea.2018.180009 http://dx.doi.org/10.29026/oea.2018.180009
ROY T , ZHANG S Y , JUNG I W , et al . Dynamic metasurface lens based on MEMS technology [J]. APL Photonics , 2018 , 3 ( 2 ): 021302 . doi: 10.1063/1.5018865 http://dx.doi.org/10.1063/1.5018865
ARBABI E , ARBABI A , KAMALI S M , et al . MEMS-tunable dielectric metasurface lens [J]. MEMS-tunable dielectric metasurface lens[ J]. Nature Communications, 2018 , 9 ( 1 ): 812 . doi: 10.1038/s41467-018-03155-6 http://dx.doi.org/10.1038/s41467-018-03155-6
CUI T , BAI B F , SUN H B . Tunable metasurfaces based on active materials [J]. Advanced Functional Materials , 2019 , 29 ( 10 ): 1806692 . doi: 10.1002/adfm.201806692 http://dx.doi.org/10.1002/adfm.201806692
HU Y Q , OU X N , ZENG T B , et al . Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region [J]. Nano Letters , 2021 , 21 ( 11 ): 4554 - 4562 . doi: 10.1021/acs.nanolett.1c00104 http://dx.doi.org/10.1021/acs.nanolett.1c00104
WANG Q , ROGERS E T F , GHOLIPOUR B , et al . Optically reconfigurable metasurfaces and photonic devices based on phase change materials [J]. Nature Photonics , 2016 , 10 ( 1 ): 60 - 65 . doi: 10.1038/nphoton.2015.247 http://dx.doi.org/10.1038/nphoton.2015.247
GUO K , LI X Y , AI H F , et al . Tunable oriented mid-infrared wave based on metasurface with phase change material of GST [J]. Results in Physics , 2022 , 34 : 105269 . doi: 10.1016/j.rinp.2022.105269 http://dx.doi.org/10.1016/j.rinp.2022.105269
SHALAGINOV M Y , AN S S , ZHANG Y F , et al . Reconfigurable all-dielectric metalens with diffraction-limited performance [J]. Nature Communications , 2021 , 12 ( 1 ): 1225 . doi: 10.1038/s41467-021-21440-9 http://dx.doi.org/10.1038/s41467-021-21440-9
XU J W , TIAN X M , LI Z Y , et al . Ge 2 Sb 2 Se 4 Te 1 -based spin-decoupled metasurface for multidimensional and switchable focusing in the mid-infrared regime [J]. Optical Materials Express , 2022 , 12 ( 3 ): 918 . doi: 10.1364/ome.449652 http://dx.doi.org/10.1364/ome.449652
CHEN Y K , PU S L , WANG C Z , et al . Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity [J]. Optics Letters , 2021 , 46 ( 8 ): 1930 - 1933 . doi: 10.1364/ol.417224 http://dx.doi.org/10.1364/ol.417224
BOGH C L , MUHOWSKI A J , MONTEALEGRE D A , et al . Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses [J]. ACS Applied Electronic Materials , 2020 , 2 ( 8 ): 2638 - 2643 . doi: 10.1021/acsaelm.0c00510 http://dx.doi.org/10.1021/acsaelm.0c00510
HOU H W , ZHANG Y Y , LUO Z D , et al . Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors [J]. Optics and Lasers in Engineering , 2022 , 150 : 106849 . doi: 10.1016/j.optlaseng.2021.106849 http://dx.doi.org/10.1016/j.optlaseng.2021.106849
ZHOU K S , WANG B X , TANG S W , et al . Mid-infrared biomimetic moth-eye-shaped polarization-maintaining and angle-insensitive metalens [J]. Optics Express , 2022 , 30 ( 7 ): 12048 - 12060 . doi: 10.1364/oe.454610 http://dx.doi.org/10.1364/oe.454610
ZHAO F , LU R S , CHEN X N , et al . Metalens‐assisted system for underwater imaging [J]. Laser & Photonics Reviews , 2021 , 15 ( 8 ): 2100097 . doi: 10.1002/lpor.202100097 http://dx.doi.org/10.1002/lpor.202100097
GUO Q , SHI Z J , HUANG Y W , et al . Compact single-shot metalens depth sensors inspired by eyes of jumping spiders [J]. Proceedings of the National Academy of Sciences of the United States of America , 2019 , 116 ( 46 ): 22959 - 22965 . doi: 10.1073/pnas.1912154116 http://dx.doi.org/10.1073/pnas.1912154116
PAHLEVANINEZHAD M , HUANG Y W , PAHLEVANI M , et al . Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions [J]. Nature Photonics , 2022 , 16 ( 3 ): 203 - 211 . doi: 10.1038/s41566-022-00956-6 http://dx.doi.org/10.1038/s41566-022-00956-6
CHEN C , SONG W G , CHEN J W , et al . Spectral tomographic imaging with aplanatic metalens [J]. Light: Science & Applications , 2019 , 8 : 99 . doi: 10.1038/s41377-019-0208-0 http://dx.doi.org/10.1038/s41377-019-0208-0
FAN Q B , XU W Z , HU X M , et al . Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field [J]. Nature Communications , 2022 , 13 ( 1 ): 2130 . doi: 10.1038/s41467-022-29568-y http://dx.doi.org/10.1038/s41467-022-29568-y
LIN R J , SU V C , WANG S M , et al . Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology , 2019 , 14 ( 3 ): 227 - 231 . doi: 10.1038/s41565-018-0347-0 http://dx.doi.org/10.1038/s41565-018-0347-0
SHE A L , ZHANG S Y , SHIAN S , et al . Large area metalenses: design, characterization, and mass manufacturing [J]. Optics Express , 2018 , 26 ( 2 ): 1573 - 1585 . doi: 10.1364/oe.26.001573 http://dx.doi.org/10.1364/oe.26.001573
PHAN T , SELL D , WANG E W , et al . High-efficiency, large-area, topology-optimized metasurfaces [J]. Light: Science & Applications , 2019 , 8 ( 1 ): 48 . doi: 10.1038/s41377-019-0159-5 http://dx.doi.org/10.1038/s41377-019-0159-5
IMANI M F , GOLLUB J N , YURDUSEVEN O , et al . Review of metasurface antennas for computational microwave imaging [J]. IEEE Transactions on Antennas and Propagation , 2020 , 68 ( 3 ): 1860 - 1875 . doi: 10.1109/tap.2020.2968795 http://dx.doi.org/10.1109/tap.2020.2968795
COLBURN S , ZHAN A L , MAJUMDAR A . Metasurface optics for full-color computational imaging [J]. Science Advances , 2018 , 4 ( 2 ): eaar2114 . doi: 10.1126/sciadv.aar2114 http://dx.doi.org/10.1126/sciadv.aar2114
CAMPBELL S D , SELL D , JENKINS R P , et al . Review of numerical optimization techniques for meta-device design [Invited] [J]. Optical Materials Express , 2019 , 9 ( 4 ): 1842 . doi: 10.1364/ome.9.001842 http://dx.doi.org/10.1364/ome.9.001842
MOLESKY S , LIN Z , PIGGOTT A Y , et al . Inverse design in nanophotonics [J]. Nature Photonics , 2018 , 12 ( 11 ): 659 - 670 . doi: 10.1038/s41566-018-0246-9 http://dx.doi.org/10.1038/s41566-018-0246-9
JIN Z W , MEI S T , CHEN S Q , et al . Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm [J]. ACS Nano , 2019 , 13 ( 1 ): 821 - 829 . doi: 10.1021/acsnano.8b08333 http://dx.doi.org/10.1021/acsnano.8b08333
JAFAR-ZANJANI S , INAMPUDI S , MOSALLAEI H . Adaptive genetic algorithm for optical metasurfaces design [J]. Scientific Reports , 2018 , 8 ( 1 ): 11040 . doi: 10.1038/s41598-018-29275-z http://dx.doi.org/10.1038/s41598-018-29275-z
LI Z Y , PESTOURIE R , PARK J S , et al . Inverse design enables large-scale high-performance meta-optics reshaping virtual reality [J]. Nature Communications , 2022 , 13 ( 1 ): 2409 . doi: 10.1038/s41467-022-29973-3 http://dx.doi.org/10.1038/s41467-022-29973-3
PARK J , KIM S , NAM D W , et al . Free-form optimization of nanophotonic devices: from classical methods to deep learning [J]. Nanophotonics , 2022 , 11 ( 9 ): 1809 - 1845 . doi: 10.1515/nanoph-2021-0713 http://dx.doi.org/10.1515/nanoph-2021-0713
ZHELYEZNYAKOV M V , BRUNTON S , MAJUMDAR A . Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces [J]. ACS Photonics , 2021 , 8 ( 2 ): 481 - 488 . doi: 10.1021/acsphotonics.0c01468 http://dx.doi.org/10.1021/acsphotonics.0c01468
胡跃强 , 李鑫 , 王旭东 , 等 . 光学超构表面的微纳加工技术研究进展 [J]. 红外与激光工程 , 2020 , 49 ( 9 ): 96 - 114 . doi: 10.3788/IRLA20201035 http://dx.doi.org/10.3788/IRLA20201035
HU Y Q , LI X , WANG X D , et al . Progress of micro-nano fabrication technologies for optical metasurfaces [J]. Infrared and Laser Engineering , 2020 , 49 ( 9 ): 96 - 114 . (in Chinese) . doi: 10.3788/IRLA20201035 http://dx.doi.org/10.3788/IRLA20201035
0
浏览量
1974
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构