浏览全部资源
扫码关注微信
1.同济大学 物理科学与工程学院 精密光学工程技术研究所,上海 200092
2.同济大学 物理科学与工程学院 先进微结构材料教育部重点实验室,上海 200092
3.上海市数字光学前沿科学研究基地,上海 200092
4.上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092
[ "何 涛(1993-),男,博士,2016年、2021年于同济大学分别获得学士、博士学位,主要从事超表面设计与制造方面的研究。E-mail: hetao@tongji.edu.cn" ]
收稿日期:2022-07-14,
修回日期:2022-09-02,
纸质出版日期:2022-11-10
移动端阅览
何涛,魏泽勇,王占山等.光学超构表面异常偏折研究进展[J].光学精密工程,2022,30(21):2626-2638.
HE Tao,WEI Zeyong,WANG Zhanshan,et al.Research progress on anomalous deflection of optical metasurfaces[J].Optics and Precision Engineering,2022,30(21):2626-2638.
何涛,魏泽勇,王占山等.光学超构表面异常偏折研究进展[J].光学精密工程,2022,30(21):2626-2638. DOI: 10.37188/OPE.20223021.2626.
HE Tao,WEI Zeyong,WANG Zhanshan,et al.Research progress on anomalous deflection of optical metasurfaces[J].Optics and Precision Engineering,2022,30(21):2626-2638. DOI: 10.37188/OPE.20223021.2626.
将光波偏折到预定的非镜面折/反射方向是超构表面的一项重要能力,也是超构表面对光波进行复杂操控的基础。为了提高异常偏折超构表面的性能并拓展其应用,现有研究主要围绕设计理念、器件构型、演示应用等方面展开。目前光学超构表面的异常折射和反射效率已经提升至90%和99%,各种基于超构表面异常偏折光波调控的演示性应用也相继被提出。从物理机制、实现方法以及应用研究几方面出发,本文对光学超构表面异常偏折研究进行了回顾和讨论,同时也对潜在的挑战进行了总结,对异常偏折超构表面的进一步研究进行了展望。
Deflecting light waves in a predetermined direction of non-specular refraction/reflection is an important property of metasurfaces and is also the basis for the manipulation of light waves by optical metasurfaces. To improve the performance of anomalous deflection metasurfaces and expand their applications, the existing research mainly focuses on the design methodology, configuration, and the demonstration of applications. At present, the anomalous refraction and reflection efficiencies of optical metasurfaces have been increased to more than 90% and 99%, respectively. Furthermore, various applications based on anomalous deflection have been proposed. Studies on anomalous deflection metasurfaces are reviewed and discussed from the aspects of physical mechanism, implementation method, and application. The potential challenges are also summarized and further studies of anomalous deflection metasurfaces are explored.
SMITH D R , PENDRY J B , WILTSHIRE M C K . Metamaterials and negative refractive index [J]. Science , 2004 , 305 ( 5685 ): 788 - 792 . doi: 10.1126/science.1096796 http://dx.doi.org/10.1126/science.1096796
MENZEL C , ROCKSTUHL C , PAUL T , et al . Retrieving effective parameters for metamaterials at oblique incidence [J]. Physical Review B , 2008 , 77 ( 19 ): 195328 . doi: 10.1103/physrevb.77.195328 http://dx.doi.org/10.1103/physrevb.77.195328
SCHURIG D , MOCK J J , JUSTICE B J , et al . Metamaterial electromagnetic cloak at microwave frequencies [J]. Science , 2006 , 314 ( 5801 ): 977 - 980 . doi: 10.1126/science.1133628 http://dx.doi.org/10.1126/science.1133628
VALENTINE J , ZHANG S , ZENTGRAF T , et al . Three-dimensional optical metamaterial with a negative refractive index [J]. Nature , 2008 , 455 ( 7211 ): 376 - 379 . doi: 10.1038/nature07247 http://dx.doi.org/10.1038/nature07247
TSENG M L , HSIAO H , CHU C H , et al . Metalenses: advances and applications [J]. Advanced Optical Materials , 2018 , 6 ( 18 ): 1800554 . doi: 10.1002/adom.201800554 http://dx.doi.org/10.1002/adom.201800554
GENEVET P , CAPASSO F , AIETA F , et al . Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica , 2017 , 4 ( 1 ): 139 - 152 . doi: 10.1364/optica.4.000139 http://dx.doi.org/10.1364/optica.4.000139
CHEN S Q , LI Z C , LIU W W , et al . From single-dimensional to multidimensional manipulation of optical waves with metasurfaces [J]. Advanced Materials (Deerfield Beach, Fla) , 2019 , 31 ( 16 ): e1802458 . doi: 10.1002/adma.201970118 http://dx.doi.org/10.1002/adma.201970118
CHEN W T , CAPASSO F . Will flat optics appear in everyday life anytime soon? [J]. Applied Physics Letters , 2021 , 118 ( 10 ): 100503 . doi: 10.1063/5.0039885 http://dx.doi.org/10.1063/5.0039885
LUO X G , PU M B , GUO Y H , et al . Catenary functions meet electromagnetic waves: opportunities and promises [J]. Advanced Optical Materials , 2020 , 8 ( 23 ): 2001194 . doi: 10.1002/adom.202001194 http://dx.doi.org/10.1002/adom.202001194
WU Y K , YANG W H , FAN Y B , et al . TiO 2 metasurfaces: from visible planar photonics to photochemistry [J]. Science Advances , 2019 , 5 ( 11 ): eaax0939 . doi: 10.1126/sciadv.aax0939 http://dx.doi.org/10.1126/sciadv.aax0939
SHI T , WANG Y J , DENG Z L , et al . All‐dielectric kissing‐dimer metagratings for asymmetric high diffraction [J]. Advanced Optical Materials , 2019 , 7 ( 24 ): 1901389 . doi: 10.1002/adom.201901389 http://dx.doi.org/10.1002/adom.201901389
CHALABI H , RA'DI Y , SOUNAS D L , et al . Efficient anomalous reflection through near-field interactions in metasurfaces [J]. Physical Review B , 2017 , 96 ( 7 ): 075432 . doi: 10.1103/physrevb.96.075432 http://dx.doi.org/10.1103/physrevb.96.075432
NEMILENTSAU A , LOW T . Broadband achromatic anomalous mirror in near-IR and visible frequency ranges [J]. ACS Photonics , 2017 , 4 ( 7 ): 1646 - 1652 . doi: 10.1021/acsphotonics.6b00922 http://dx.doi.org/10.1021/acsphotonics.6b00922
PATRI A , KÉNA-COHEN S , CALOZ C . Large-angle, broadband, and multifunctional directive waveguide scatterer gratings [J]. ACS Photonics , 2019 , 6 ( 12 ): 3298 - 3305 . doi: 10.1021/acsphotonics.9b01319 http://dx.doi.org/10.1021/acsphotonics.9b01319
WANG S M , WU P C , SU V C , et al . A broadband achromatic metalens in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 227 - 232 . doi: 10.1038/s41565-017-0052-4 http://dx.doi.org/10.1038/s41565-017-0052-4
LI K , GUO Y H , PU M B , et al . Dispersion controlling meta-lens at visible frequency [J]. Optics Express , 2017 , 25 ( 18 ): 21419 - 21427 . doi: 10.1364/oe.25.021419 http://dx.doi.org/10.1364/oe.25.021419
WANG S M , WU P C , SU V C , et al . Broadband achromatic optical metasurface devices [J]. Nature Communications , 2017 , 8 : 187 . doi: 10.1038/s41467-017-00166-7 http://dx.doi.org/10.1038/s41467-017-00166-7
WANG Y J , CHEN Q M , YANG W H , et al . High-efficiency broadband achromatic metalens for near-IR biological imaging window [J]. Nature Communications , 2021 , 12 : 5560 . doi: 10.1038/s41467-021-25797-9 http://dx.doi.org/10.1038/s41467-021-25797-9
KHORASANINEJAD M , CHEN W T , DEVLIN R C , et al . Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science , 2016 , 352 ( 6290 ): 1190 - 1194 . doi: 10.1126/science.aaf6644 http://dx.doi.org/10.1126/science.aaf6644
XIONG B , XU Y H , WANG J N , et al . Realizing colorful holographic mimicry by metasurfaces [J]. Advanced Materials (Deerfield Beach, Fla) , 2021 , 33 ( 21 ): e2005864 . doi: 10.1002/adma.202005864 http://dx.doi.org/10.1002/adma.202005864
ZHOU H Q , SAIN B , WANG Y T , et al . Polarization-encrypted orbital angular momentum multiplexed metasurface holography [J]. ACS Nano , 2020 , 14 ( 5 ): 5553 - 5559 . doi: 10.1021/acsnano.9b09814 http://dx.doi.org/10.1021/acsnano.9b09814
UANGYA , HOU , YUNGMOK , et al . 2D broadband beamsteering with large-scale MEMS optical phased array: supplementary material [J]. Optica , 2019 , 6 ( 5 ): 557 - 562 . doi: 10.1364/optica.6.000557 http://dx.doi.org/10.1364/optica.6.000557
LI Z Y , KIM M H , WANG C , et al . Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces [J]. Nature Nanotechnology , 2017 , 12 ( 7 ): 675 - 683 . doi: 10.1038/nnano.2017.50 http://dx.doi.org/10.1038/nnano.2017.50
KANG M , RA'DI Y , FARFAN D , et al . Efficient focusing with large numerical aperture using a hybrid metalens [J]. Physical Review Applied , 2020 , 13 ( 4 ): 044016 . doi: 10.1103/physrevapplied.13.044016 http://dx.doi.org/10.1103/physrevapplied.13.044016
DE GALARRETA C R , ALEXEEV A M , AU Y , et al . Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared [J]. Advanced Functional Materials , 2018 , 28 ( 10 ): 1704993 . doi: 10.1002/adfm.201704993 http://dx.doi.org/10.1002/adfm.201704993
PANIAGUA-DOMÍNGUEZ R , YU Y F , KHAIDAROV E , et al . A metalens with a near-unity numerical aperture [J]. Nano Letters , 2018 , 18 ( 3 ): 2124 - 2132 . doi: 10.1021/acs.nanolett.8b00368 http://dx.doi.org/10.1021/acs.nanolett.8b00368
DENG Y D , WU C , MENG C , et al . Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering [C]. SPIE Photonics Europe. Proceedings of SPIE Conference on Metamaterials XIII , Strasbourg, France . 2022 : PC121300J . doi: 10.1117/12.2618233 http://dx.doi.org/10.1117/12.2618233
YAO Z , XIA X C , HOU Y P , et al . Metasurface-enhanced optical lever sensitivity for atomic force microscopy [J]. Nanotechnology , 2019 , 30 ( 36 ): 365501 . doi: 10.1088/1361-6528/ab2435 http://dx.doi.org/10.1088/1361-6528/ab2435
YU N F , GENEVET P , KATS M A , et al . Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science , 2011 , 334 ( 6054 ): 333 - 337 . doi: 10.1126/science.1210713 http://dx.doi.org/10.1126/science.1210713
PFEIFFER C , GRBIC A . Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets [J]. Physical Review Letters , 2013 , 110 ( 19 ): 197401 . doi: 10.1103/physrevlett.110.197401 http://dx.doi.org/10.1103/physrevlett.110.197401
PORS A , ALBREKTSEN O , RADKO I P , et al . Gap plasmon-based metasurfaces for total control of reflected light [J]. Scientific Reports , 2013 , 3 : 2155 . doi: 10.1038/srep02155 http://dx.doi.org/10.1038/srep02155
LI Z W , HUANG L R , LU K , et al . Continuous metasurface for high-performance anomalous reflection [J]. Applied Physics Express , 2014 , 7 ( 11 ): 112001 . doi: 10.7567/apex.7.112001 http://dx.doi.org/10.7567/apex.7.112001
HO Y Z , CHENG B H , HSU W L , et al . Anomalous reflection from metasurfaces with gradient phase distribution below 2π [J]. Applied Physics Express , 2016 , 9 ( 7 ): 072502 . doi: 10.7567/apex.9.072502 http://dx.doi.org/10.7567/apex.9.072502
SUN S L , YANG K Y , WANG C M , et al . High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters , 2012 , 12 ( 12 ): 6223 - 6229 . doi: 10.1021/nl3032668 http://dx.doi.org/10.1021/nl3032668
SELL D , YANG J J , DOSHAY S , et al . Large-angle, multifunctional metagratings based on freeform multimode geometries [J]. Nano Letters , 2017 , 17 ( 6 ): 3752 - 3757 . doi: 10.1021/acs.nanolett.7b01082 http://dx.doi.org/10.1021/acs.nanolett.7b01082
EPSTEIN A , ELEFTHERIADES G V . Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection [J]. Physical Review Letters , 2016 , 117 ( 25 ): 256103 . doi: 10.1103/physrevlett.117.256103 http://dx.doi.org/10.1103/physrevlett.117.256103
WONG A M H , ELEFTHERIADES G V . Perfect anomalous reflection with a bipartite Huygens’ metasurface [J]. Physical Review X , 2018 , 8 : 011036 . doi: 10.1103/physrevx.8.011036 http://dx.doi.org/10.1103/physrevx.8.011036
KWON D H , TRETYAKOV S A . Perfect reflection control for impenetrable surfaces using surface waves of orthogonal polarization [J]. Physical Review B , 2017 , 96 ( 8 ): 085438 . doi: 10.1103/physrevb.96.085438 http://dx.doi.org/10.1103/physrevb.96.085438
HE T , LIU T , XIAO S Y , et al . Perfect anomalous reflectors at optical frequencies [J]. Science Advances , 2022 , 8 ( 9 ): eabk3381 . doi: 10.1126/sciadv.abk3381 http://dx.doi.org/10.1126/sciadv.abk3381
SUN S L , HE Q , XIAO S Y , et al . Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Materials , 2012 , 11 ( 5 ): 426 - 431 . doi: 10.1038/nmat3292 http://dx.doi.org/10.1038/nmat3292
QIN F , DING L , ZHANG L , et al . Hybrid bilayer plasmonic metasurface efficiently manipulates visible light [J]. Science Advances , 2016 , 2 ( 1 ): e1501168 . doi: 10.1126/sciadv.1501168 http://dx.doi.org/10.1126/sciadv.1501168
LI Z Y , PALACIOS E , BUTUN S , et al . Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting (Presentation Recording) [C]. SPIE Nanoscience + Engineering. Proc SPIE 9544, Metamaterials, Metadevices, and Metasystems 2015 , San Diego, California, USA . 2015 , 9544 : 225 . doi: 10.1117/12.2187115 http://dx.doi.org/10.1117/12.2187115
GAO S , YUE W J , PARK C S , et al . Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light [J]. ACS Photonics , 2017 , 4 ( 2 ): 322 - 328 . doi: 10.1021/acsphotonics.6b00783 http://dx.doi.org/10.1021/acsphotonics.6b00783
GAO S , LEE S S , KIM E S , et al . Vertically integrated visible and near-infrared metasurfaces enabling an ultra-broadband and highly angle-resolved anomalous reflection [J]. Nanoscale , 2018 , 10 ( 26 ): 12453 - 12460 . doi: 10.1039/c8nr03059f http://dx.doi.org/10.1039/c8nr03059f
LIN D M , FAN P Y , HASMAN E , et al . Dielectric gradient metasurface optical elements [J]. Science , 2014 , 345 ( 6194 ): 298 - 302 . doi: 10.1126/science.1253213 http://dx.doi.org/10.1126/science.1253213
SHALAEV M I , SUN J B , TSUKERNIK A , et al . High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode [J]. Nano Letters , 2015 , 15 ( 9 ): 6261 - 6266 . doi: 10.1021/acs.nanolett.5b02926 http://dx.doi.org/10.1021/acs.nanolett.5b02926
ZHOU Z P , LI J T , SU R B , et al . Efficient silicon metasurfaces for visible light [J]. ACS Photonics , 2017 , 4 ( 3 ): 544 - 551 . doi: 10.1021/acsphotonics.6b00740 http://dx.doi.org/10.1021/acsphotonics.6b00740
YANG Y M , WANG W Y , MOITRA P , et al . Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters , 2014 , 14 ( 3 ): 1394 - 1399 . doi: 10.1021/nl4044482 http://dx.doi.org/10.1021/nl4044482
SUN S , ZHOU Z X , ZHANG C , et al . All-dielectric meta-reflectarray for efficient control of visible light [J]. Annalen Der Physik , 2018 , 530 ( 3 ): 1700418 . doi: 10.1002/andp.201700418 http://dx.doi.org/10.1002/andp.201700418
MOHAMMADI ESTAKHRI N , ALÙ A . Wave-front transformation with gradient metasurfaces [J]. Physical Review X , 2016 , 6 ( 4 ): 041008 . doi: 10.1103/physrevx.6.041008 http://dx.doi.org/10.1103/physrevx.6.041008
DÍAZ-RUBIO A , ASADCHY V S , ELSAKKA A , et al . From the generalized reflection law to the realization of perfect anomalous reflectors [J]. Science Advances , 2017 , 3 ( 8 ): e1602714 . doi: 10.1126/sciadv.1602714 http://dx.doi.org/10.1126/sciadv.1602714
ASADCHY V S , WICKBERG A , DÍAZ-RUBIO A , et al . Eliminating scattering loss in anomalously reflecting optical metasurfaces [J]. ACS Photonics , 2017 , 4 ( 5 ): 1264 - 1270 . doi: 10.1021/acsphotonics.7b00213 http://dx.doi.org/10.1021/acsphotonics.7b00213
SELL D , YANG J J , WANG E W , et al . Ultra-high-efficiency anomalous refraction with dielectric metasurfaces [J]. ACS Photonics , 2018 , 5 ( 6 ): 2402 - 2407 . doi: 10.1021/acsphotonics.8b00183 http://dx.doi.org/10.1021/acsphotonics.8b00183
FAN J A . Freeform metasurface design based on topology optimization [J]. MRS Bulletin , 2020 , 45 ( 3 ): 196 - 201 . doi: 10.1557/mrs.2020.62 http://dx.doi.org/10.1557/mrs.2020.62
WEN F F , JIANG J Q , FAN J A . Robust freeform metasurface design based on progressively growing generative networks [J]. ACS Photonics , 2020 , 7 ( 8 ): 2098 - 2104 . doi: 10.1021/acsphotonics.0c00539 http://dx.doi.org/10.1021/acsphotonics.0c00539
YANG J J , FAN J A . Topology-optimized metasurfaces: impact of initial geometric layout [J]. Optics Letters , 2017 , 42 ( 16 ): 3161 - 3164 . doi: 10.1364/ol.42.003161 http://dx.doi.org/10.1364/ol.42.003161
YANG J J , FAN J A . Analysis of material selection on dielectric metasurface performance [J]. Optics Express , 2017 , 25 ( 20 ): 23899 - 23909 . doi: 10.1364/oe.25.023899 http://dx.doi.org/10.1364/oe.25.023899
FAN Z Y , SHCHERBAKOV M R , ALLEN M , et al . Perfect diffraction with bianisotropic metagratings [J]. ACS Photonics , 2018 , 5 ( 11 ): 4303 - 4311 . doi: 10.1021/acsphotonics.8b00434 http://dx.doi.org/10.1021/acsphotonics.8b00434
KOMAR A , PANIAGUA-DOMÍNGUEZ R , MIROSHNICHENKO A , et al . Dynamic beam switching by liquid crystal tunable dielectric metasurfaces [J]. ACS Photonics , 2018 , 5 ( 5 ): 1742 - 1748 . doi: 10.1021/acsphotonics.7b01343 http://dx.doi.org/10.1021/acsphotonics.7b01343
LI S Q , XU X W , MARUTHIYODAN VEETIL R , et al . Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science , 2019 , 364 ( 6445 ): 1087 - 1090 . doi: 10.1126/science.aaw6747 http://dx.doi.org/10.1126/science.aaw6747
THUREJA P , SHIRMANESH G K , FOUNTAINE K T , et al . Array-level inverse design of beam steering active metasurfaces [J]. ACS Nano , 2020 , 14 ( 11 ): 15042 - 15055 . doi: 10.1021/acsnano.0c05026 http://dx.doi.org/10.1021/acsnano.0c05026
PARK J , JEONG B G , KIM S I , et al . All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications [J]. Nature Nanotechnology , 2021 , 16 ( 1 ): 69 - 76 . doi: 10.1038/s41565-020-00787-y http://dx.doi.org/10.1038/s41565-020-00787-y
FARAJI-DANA M , ARBABI E , ARBABI A , et al . Compact folded metasurface spectrometer [J]. Nature Communications , 2018 , 9 : 4196 . doi: 10.1038/s41467-018-06495-5 http://dx.doi.org/10.1038/s41467-018-06495-5
FARAJI-DANA M , ARBABI E , KWON H , et al . Hyperspectral imager with folded metasurface optics [J]. ACS Photonics , 2019 , 6 ( 8 ): 2161 - 2167 . doi: 10.1021/acsphotonics.9b00744 http://dx.doi.org/10.1021/acsphotonics.9b00744
XU X , KWON H , GAWLIK B , et al . Enhanced photoresponse in metasurface-integrated organic photodetectors [J]. Nano Letters , 2018 , 18 ( 6 ): 3362 - 3367 . doi: 10.1021/acs.nanolett.7b05261 http://dx.doi.org/10.1021/acs.nanolett.7b05261
0
浏览量
942
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构