浏览全部资源
扫码关注微信
广州大学 机械与电气工程学院,广东 广州 510006
[ "马 鸽(1988-),女,山东济宁人,博士,讲师,2016年于华南理工大学获得博士学位,现为广州大学机器人工程专业教师,主要从事机器视觉、图像处理等方面的研究。Email:m_ge@gzhu.edu.cn" ]
[ "邹 涛(1975-),男,辽宁营口人,博士后,研究员,2005年于上海交通大学获得博士学位,现为广州大学机械与电气工程学院院长和智能制造工程研究院院长,主要从事智能制造、工业软件研发与工程应用等方面的研究。Email:tzou@gzhu.edu.cn" ]
收稿日期:2022-04-29,
修回日期:2022-05-23,
纸质出版日期:2022-11-25
移动端阅览
马鸽,林森,李致富等.集成电路X射线图像的多正则化图像复原[J].光学精密工程,2022,30(22):2913-2922.
MA Ge,LIN Sen,LI Zhifu,et al.Multi-regularization image restoration method for X-ray images of integrated circuit[J].Optics and Precision Engineering,2022,30(22):2913-2922.
马鸽,林森,李致富等.集成电路X射线图像的多正则化图像复原[J].光学精密工程,2022,30(22):2913-2922. DOI: 10.37188/OPE.20223022.2913.
MA Ge,LIN Sen,LI Zhifu,et al.Multi-regularization image restoration method for X-ray images of integrated circuit[J].Optics and Precision Engineering,2022,30(22):2913-2922. DOI: 10.37188/OPE.20223022.2913.
针对集成电路X射线图像噪声强烈、对比度低的特点,本文充分考虑图像边缘细节和平滑区域在细节保持和噪声去除上的不同需求,提出一种多正则化图像复原方法。该方法基于快速傅里叶变换下的高斯高通滤波和高斯低通滤波获取集成电路X射线图像的边缘细节结果和平滑滤波结果作为正则化图像复原的观测图像,充分利用
<math id="M1"><msub><mrow><mi>l</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227313&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227307&type=
2.03200006
3.21733332
正则项在细节保持以及全变分(Total Variation,
<math id="M2"><mi mathvariant="normal">T</mi><mi mathvariant="normal">V</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227324&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227319&type=
4.82600021
2.45533323
)正则项在噪声去除上的优越性设计了一种
<math id="M3"><mi mathvariant="normal">T</mi><mi mathvariant="normal">V</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227335&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227331&type=
4.82600021
2.45533323
-
<math id="M4"><msub><mrow><mi>l</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227344&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37227340&type=
2.03200006
3.21733332
混合正则化模型,解决整幅图像采用单一正则化项造成的细节过度平滑缺失或去噪效果差的问题。标准自然光图像和集成电路的X射线图像两个系列的实验表明了本文方法能够在有效去除噪声的同时保留更多的细节信息,为后续集成电路的缺陷检测奠定基础。
The X-ray images of Integrated Circuits (IC) generally have high noise and low contrast characteristics. Considering the different needs in detail preservation and noise removal of edge details and smooth regions, this paper proposes a multi-regularization image restoration method. Firstly, by employing a Fourier transform based Gauss high-pass filter and Gauss low-pass filter, the edge detail and smoothing filter results were obtained as new observed images for image restoration. Then, a TV-
l
1
mixed regularization model, which takes full use of the advantages of
l
1
regularization term in detail preservation and Total Variation (TV) regularization term in noise removal, was designed. The model is capable of addressing the problem of excessive smoothing or defective denoising caused by a single regularization term. Experiments on standard and IC X-ray images show that the proposed method can effectively remove noise while retaining more details, laying a foundation for subsequent defect detection of IC.
MIKHAYLOV A , ZAKHAROVA M , VLNIESKA V , et al . Inverted Hartmann mask made by deep X-ray lithography for single-shot multi-contrast X-ray imaging with laboratory setup [J]. Optics Express , 2022 , 30 ( 6 ): 8494 . doi: 10.1364/oe.452114 http://dx.doi.org/10.1364/oe.452114
PORTA R R À , STERCHI Y , SCHWANINGER A . How realistic is threat image projection for X-ray baggage screening? [J]. Sensors (Basel, Switzerland) , 2022 , 22 ( 6 ): 2220 . doi: 10.3390/s22062220 http://dx.doi.org/10.3390/s22062220
WU H D , GE Y S , NIU G D , et al . Metal halide perovskites for X-ray detection and imaging [J]. Matter , 2021 , 4 ( 1 ): 144 - 163 . doi: 10.1016/j.matt.2020.11.015 http://dx.doi.org/10.1016/j.matt.2020.11.015
高红霞 , 吴丽璇 , 徐寒 , 等 . 微焦点X射线图像乘性加性混合噪声的去除 [J]. 光学 精密工程 , 2014 , 22 ( 11 ): 3100 - 3113 . doi: 10.3788/ope.20142211.3100 http://dx.doi.org/10.3788/ope.20142211.3100
GAO H X , WU L X , XU H , et al . Denoising method of micro-focus X-ray images corrupted with mixed multiplicative and additive noises [J]. Opt. Precision Eng. , 2014 , 22 ( 11 ): 3100 - 3113 . (in Chinese) . doi: 10.3788/ope.20142211.3100 http://dx.doi.org/10.3788/ope.20142211.3100
马鸽 , 胡跃明 , 高红霞 , 等 . 基于物理总能量目标函数的稀疏重建模型 [J]. 物理学报 , 2015 , 64 ( 20 ): 204202 . doi: 10.7498/aps.64.204202 http://dx.doi.org/10.7498/aps.64.204202
MA G , HU Y M , GAO H X , et al . Physical total energy based objective function model for sparse reconstruction [J]. Acta Physica Sinica , 2015 , 64 ( 20 ): 204202 . (in Chinese) . doi: 10.7498/aps.64.204202 http://dx.doi.org/10.7498/aps.64.204202
WEN L , XIE X T , LI X Y , et al . A new ensemble convolutional neural network with diversity regularization for fault diagnosis [J]. Journal of Manufacturing Systems , 2022 , 62 : 964 - 971 . doi: 10.1016/j.jmsy.2020.12.002 http://dx.doi.org/10.1016/j.jmsy.2020.12.002
REN D W , ZUO W M , ZHANG D , et al . Simultaneous fidelity and regularization learning for image restoration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2021 , 43 ( 1 ): 284 - 299 . doi: 10.1109/tpami.2019.2926357 http://dx.doi.org/10.1109/tpami.2019.2926357
LU P , NADIA B , JIANG W , et al . Blind image restoration enhances digital autoradiographic imaging of radiopharmaceutical tissue distribution [J]. Journal of Nuclear Medicine: Official Publication , Society of Nuclear Medicine, 2022 , 63 ( 4 ): 591 - 597 . doi: 10.2967/jnumed.121.262270 http://dx.doi.org/10.2967/jnumed.121.262270
曹学影 , 王琳 , 谭覃燕 , 等 . 自适应双刃边法模糊红外图像复原 [J]. 光学 精密工程 , 2022 , 30 ( 5 ): 630 - 640 . doi: 10.37188/OPE.20223005.0620 http://dx.doi.org/10.37188/OPE.20223005.0620
CAO X Y , WANG L , TAN Q Y , et al . Restoration of blurred infrared image by adaptive double edge method [J]. Opt. Precision Eng. , 2022 , 30 ( 5 ): 630 - 640 . (in Chinese) . doi: 10.37188/OPE.20223005.0620 http://dx.doi.org/10.37188/OPE.20223005.0620
GAO F Y , DENG X , XU M , et al . Multi-modal convolutional dictionary learning [J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society , 2022 , 31 : 1325 - 1339 . doi: 10.1109/tip.2022.3141251 http://dx.doi.org/10.1109/tip.2022.3141251
DOGRA A , GOYAL B , AGRAWAL S . Bone vessel image fusion via generalized reisz wavelet transform using averaging fusion rule [J]. Journal of Computational Science , 2017 , 21 : 371 - 378 . doi: 10.1016/j.jocs.2016.10.009 http://dx.doi.org/10.1016/j.jocs.2016.10.009
LI X S , ZHOU F Q , TAN H S . Joint image fusion and denoising via three-layer decomposition and sparse representation [J]. Knowledge-Based Systems , 2021 , 224 : 107087 . doi: 10.1016/j.knosys.2021.107087 http://dx.doi.org/10.1016/j.knosys.2021.107087
DIWAKAR M , KUMAR M . A review on CT image noise and its denoising [J]. Biomedical Signal Processing and Control , 2018 , 42 : 73 - 88 . doi: 10.1016/j.bspc.2018.01.010 http://dx.doi.org/10.1016/j.bspc.2018.01.010
彭天奇 , 禹晶 , 郭乐宁 , 等 . 基于跨尺度字典学习的图像盲解卷积算法 [J]. 光学 精密工程 , 2021 , 29 ( 2 ): 338 - 348 . doi: 10.37188/OPE.20212902.0338 http://dx.doi.org/10.37188/OPE.20212902.0338
PENG T Q , YU J , GUO L N , et al . Blind image deconvolution via cross-scale dictionary learning [J]. Opt. Precision Eng. , 2021 , 29 ( 2 ): 338 - 348 . (in Chinese) . doi: 10.37188/OPE.20212902.0338 http://dx.doi.org/10.37188/OPE.20212902.0338
RUDIN L I , OSHER S , FATEMI E . Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena , 1992 , 60 ( 1/2/3/4 ): 259 - 268 . doi: 10.1016/0167-2789(92)90242-f http://dx.doi.org/10.1016/0167-2789(92)90242-f
REN D W , ZHANG H Z , ZHANG D , et al . Fast total-variation based image restoration based on derivative alternated direction optimization methods [J]. Neurocomputing , 2015 , 170 : 201 - 212 . doi: 10.1016/j.neucom.2014.08.101 http://dx.doi.org/10.1016/j.neucom.2014.08.101
FIGUEIREDO M A T , NOWAK R D , WRIGHT S J . Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing , 2007 , 1 ( 4 ): 586 - 597 . doi: 10.1109/jstsp.2007.910281 http://dx.doi.org/10.1109/jstsp.2007.910281
0
浏览量
531
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构